One-step implementation of a multiqubit controlled-phase-flip gate in coupled cavities
Article
First Online:
- 96 Downloads
Abstract
Multiqubit quantum controlled-phase-flip (CPF) gate between atomic qubits is desirable for scalable and distributed quantum computation. Here, we propose a scheme to realize a multiqubit quantum CPF gate between different atoms, which are trapped in separate cavities coupled by short optical fiber. After a single-photon pulse reflected by the cavity-atoms system, a multiqubit CPF gate can be implemented by only one step.
Keywords
Multiqubit quantum controlled-phase-flip (CPF) gate Quantum computation Optical fiberNotes
Acknowledgements
This work was supported by the National Natural Sciences Foundation of China (Grants Nos. 11674094, 11474092, 11774089), Shanghai Natural Science Fund Project (Grants Nos. 17ZR1442700, 18ZR1410500).
References
- 1.Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325 (1997)ADSCrossRefGoogle Scholar
- 2.Jaksch, P., Papageorgiou, A.: Eigenvector approximation leading to exponential speedup of quantum eigenvalue calculation. Phys. Rev. Lett. 91, 257902 (2003)ADSCrossRefGoogle Scholar
- 3.Paz, J.P., Roncaglia, A.: Quantum gate arrays can be programmed to evaluate the expectation value of any operator. Phys. Rev. A 68, 052316 (2003)ADSCrossRefGoogle Scholar
- 4.Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457 (1995)ADSCrossRefGoogle Scholar
- 5.Cory, D.G., Price, M.D., Maas, W., Knill, E., Laflamme, R., Zurek, W.H., Havel, T.F., Somaroo, S.S.: Experimental quantum error correction. Phys. Rev. Lett. 81, 2152 (1998)ADSCrossRefGoogle Scholar
- 6.Monz, T., Kim, K., Hänsel, W., Riebe, M., Villar, A.S., Schindler, P., Chwalla, M., Hennrich, M., Blatt, R.: Realization of the quantum Toffoli gate with trapped ions. Phys. Rev. Lett. 102, 040501 (2009)ADSCrossRefGoogle Scholar
- 7.Fedorov, A., Steffen, L., Baur, M., da Silva, M.P., Wallraff, A.: Implementation of a Toffoli gate with superconducting circuits. Nature 481, 170 (2012)ADSCrossRefGoogle Scholar
- 8.Reed, M.D., DiCarlo, L., Nigg, S.E., Sun, L., Frunzio, L., Girvin, S.M., Schoelkopf, R.J.: Realization of three-qubit quantum error correction with superconducting circuits. Nature 482, 382 (2012)ADSCrossRefGoogle Scholar
- 9.Chen, M.-F., Chen, Y.-F., Ma, S.-S.: One-step implementation of a Toffoli gate of separated superconducting qubits via quantum Zeno dynamics. Quantum Inf. Process 15, 1469 (2016)ADSMathSciNetCrossRefGoogle Scholar
- 10.Lanyon, B.P., Barbieri, M., Almeida, M.P., Jennewein, T., Ralph, T.C., Resch, K.J., Pryde, G.J., O’Brien, J.L., Gilchrist, A., White, A.G.: Simplifying quantum logic using higher-dimensional Hilbert spaces. Nat. Phys. 5, 134 (2009)CrossRefGoogle Scholar
- 11.Mičuda, M., Sedlák, M., Straka, I., Miková, M., Dušek, M., Ježek, M., Fiurášek, J.: Efficient experimental estimation of fidelity of linear optical quantum Toffoli gate. Phys. Rev. Lett. 111, 160407 (2013)ADSCrossRefGoogle Scholar
- 12.Mičuda, M., Stárek, R., Straka, I., Miková, M., Dušek, M., Ježek, M., Filip, R., Fiurášek, J.: Quantum controlled-Z gate for weakly interacting qubits. Phys. Rev. A 92, 022341 (2015)ADSCrossRefGoogle Scholar
- 13.Fiurášek, J.: Linear-optics quantum Toffoli and Fredkin gates. Phys. Rev. A 73, 062313 (2006)ADSCrossRefGoogle Scholar
- 14.Stojanović, V.M., Fedorov, A., Wallraff, A., Bruder, C.: Quantum-control approach to realizing a Toffoli gate in circuit QED. Phys. Rev. B 85, 054504 (2012)ADSCrossRefGoogle Scholar
- 15.Wei, H.R., Deng, F.G.: Universal quantum gates on electron-spin qubits with quantum dots inside single-side optical microcavities. Opt. Express 22, 593 (2014)ADSCrossRefGoogle Scholar
- 16.Hua, M., Tao, M.J., Deng, F.G.: Fast universal quantum gates on microwave photons with all-resonance operations in circuit QED. Sci. Rep. 5, 9274 (2015)CrossRefGoogle Scholar
- 17.Pellizzari, T., Gardiner, S.A., Cirac, J.I., Zoller, P.: Decoherence, continuous observation, and quantum computing: a cavity QED model. Phys. Rev. Lett. 75, 3788 (1995)ADSCrossRefGoogle Scholar
- 18.Rauschenbeutel, A., Nogues, G., Osnaghi, S., Bertet, P., Brune, M., Raimond, J.M., Haroche, S.: Coherent operation of a tunable quantum phase gate in cavity QED. Phys. Rev. Lett. 83, 5166 (1999)ADSCrossRefGoogle Scholar
- 19.Pachos, J.K., Beige, A.: Decoherence-free dynamical and geometrical entangling phase gates. Phys. Rev. A 69, 033817 (2004)ADSCrossRefGoogle Scholar
- 20.Xiao, Y.F., Zou, X.B., Guo, G.C.: One-step implementation of an N-qubit controlled-phase gate with neutral atoms trapped in an optical cavity. Phys. Rev. A 75, 054303 (2007)ADSCrossRefGoogle Scholar
- 21.Duan, L.M., Kimble, H.J.: Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004)ADSCrossRefGoogle Scholar
- 22.Reiserer, A., Ritter, S., Rempe, G.: Nondestructive detection of an optical photon. Science 342, 1349 (2013)ADSCrossRefGoogle Scholar
- 23.Tiecke, T.G., Thompson, J.D., de Leon, N.P., Liu, L.R., Vuletić, V., Lukin, M.D.: Nanophotonic quantum phase switch with a single atom. Nature 508, 241 (2014)ADSCrossRefGoogle Scholar
- 24.Reiserer, A., Kalb, N., Rempe, G., Ritter, S.: A quantum gate between a flying optical photon and a single trapped atom. Nature 508, 237 (2014)ADSCrossRefGoogle Scholar
- 25.Duan, L.M., Wang, B., Kimble, H.J.: Robust quantum gates on neutral atoms with cavity-assisted photon scattering. Phys. Rev. A 72, 032333 (2005)ADSCrossRefGoogle Scholar
- 26.Lin, X.M., Zhou, Z.W., Ye, M.Y., Xiao, Y.F., Guo, G.C.: One-step implementation of a multiqubit controlled-phase-flip gate. Phys. Rev. A 73, 012323 (2006)ADSCrossRefGoogle Scholar
- 27.Cohen, I., Mølmer, K.: Deterministic quantum network for distributed entanglement and quantum computation. Phys. Rev. A 98, 030302(R) (2018)ADSCrossRefGoogle Scholar
- 28.Serafini, A., Mancini, S., Bose, S.: Distributed quantum computation via optical fibers. Phys. Rev. Lett. 96, 010503 (2006)ADSCrossRefGoogle Scholar
- 29.Walls, D.F., Milburn, G.J.: Quantum Optics. Springer, Berlin (1994)CrossRefGoogle Scholar
- 30.Yang, Z.B., Wu, H.Z., Su, W.J., Zheng, S.B.: Quantum phase gates for two atoms trapped in separate cavities within the null- and single-excitation subspaces. Phys. Rev. A 80, 012305 (2009)ADSCrossRefGoogle Scholar
- 31.Hao, Y.M., Lin, G.W., Xia, K.Y., Lin, X.M., Niu, Y.P., Gong, S.Q.: Quantum controlled-phase-flip gate between a flying optical photon and a Rydberg atomic ensemble. Sci. Rep. 5, 10005 (2015)ADSCrossRefGoogle Scholar
- 32.Li, P.B., Gu, Y., Wang, K., Gong, Q.H.: Dark-state polaritons for quantum memory in a five-level M-type atomic ensemble. Phys. Rev. A 73, 032343 (2006)ADSCrossRefGoogle Scholar
- 33.Duan, L.M., Kuzmich, A., Kimble, H.J.: Cavity QED and quantum-information processing with “hot” trapped atoms. Phys. Rev. A 67, 032305 (2003)ADSCrossRefGoogle Scholar
- 34.Spillane, S.M., Kippenberg, T.J., Painter, O.J., Vahala, K.J.: Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics. Phys. Rev. Lett. 91, 043902 (2003)ADSCrossRefGoogle Scholar
- 35.Majer, J., Chow, J.M., Gambetta, J.M., Koch, J., Johnson, B.R., Schreier, J.A., Frunzio, L., Schuster, D.I., Houck, A.A., Wallraff, A., Blais, A., Devoret, M.H., Girvin, S.M., Schoelkopf, R.J.: Coupling superconducting qubits via a cavity bus. Nature (London) 449, 443 (2007)ADSCrossRefGoogle Scholar
- 36.Aoki, T., Dayan, B., Wilcut, E., Bowen, W.P., Parkins, A.S., Kippenberg, T.J., Vahala, K.J., Kimble, H.J.: Observation of strong coupling between one atom and a monolithic microresonator. Nature (London) 443, 671 (2006)ADSCrossRefGoogle Scholar
- 37.Welte, S., Hacker, B., Daiss, S., Ritter, S., Rempe, G.: Photon-mediated quantum gate between two neutral atoms in an optical cavity. Phys. Rev. X 8, 011018 (2018)Google Scholar
- 38.Das, S., Grankin, A., Iakoupov, I., Brion, E., Borregaard, J., Boddeda, R., Usmani, I., Ourjoumtsev, A., Grangier, P., Sørensen, A.S.: Photonic controlled-PHASE gates through Rydberg blockade in optical cavities. Phys. Rev. A 93, 040303(R) (2016)ADSCrossRefGoogle Scholar
- 39.Wade, A.C.J., Mattioli, M., Mølmer, K.: Single-atom single-photon coupling facilitated by atomic-ensemble dark-state mechanisms. Phys. Rev. A 94, 053830 (2016)ADSCrossRefGoogle Scholar
Copyright information
© Springer Science+Business Media, LLC, part of Springer Nature 2018