Advertisement

One-step implementation of a multiqubit controlled-phase-flip gate in coupled cavities

  • Yaming Hao
  • Gongwei LinEmail author
  • Yueping NiuEmail author
  • Shangqing GongEmail author
Article
  • 96 Downloads

Abstract

Multiqubit quantum controlled-phase-flip (CPF) gate between atomic qubits is desirable for scalable and distributed quantum computation. Here, we propose a scheme to realize a multiqubit quantum CPF gate between different atoms, which are trapped in separate cavities coupled by short optical fiber. After a single-photon pulse reflected by the cavity-atoms system, a multiqubit CPF gate can be implemented by only one step.

Keywords

Multiqubit quantum controlled-phase-flip (CPF) gate Quantum computation Optical fiber 

Notes

Acknowledgements

This work was supported by the National Natural Sciences Foundation of China (Grants Nos. 11674094, 11474092, 11774089), Shanghai Natural Science Fund Project (Grants Nos. 17ZR1442700, 18ZR1410500).

References

  1. 1.
    Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325 (1997)ADSCrossRefGoogle Scholar
  2. 2.
    Jaksch, P., Papageorgiou, A.: Eigenvector approximation leading to exponential speedup of quantum eigenvalue calculation. Phys. Rev. Lett. 91, 257902 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    Paz, J.P., Roncaglia, A.: Quantum gate arrays can be programmed to evaluate the expectation value of any operator. Phys. Rev. A 68, 052316 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457 (1995)ADSCrossRefGoogle Scholar
  5. 5.
    Cory, D.G., Price, M.D., Maas, W., Knill, E., Laflamme, R., Zurek, W.H., Havel, T.F., Somaroo, S.S.: Experimental quantum error correction. Phys. Rev. Lett. 81, 2152 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    Monz, T., Kim, K., Hänsel, W., Riebe, M., Villar, A.S., Schindler, P., Chwalla, M., Hennrich, M., Blatt, R.: Realization of the quantum Toffoli gate with trapped ions. Phys. Rev. Lett. 102, 040501 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    Fedorov, A., Steffen, L., Baur, M., da Silva, M.P., Wallraff, A.: Implementation of a Toffoli gate with superconducting circuits. Nature 481, 170 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    Reed, M.D., DiCarlo, L., Nigg, S.E., Sun, L., Frunzio, L., Girvin, S.M., Schoelkopf, R.J.: Realization of three-qubit quantum error correction with superconducting circuits. Nature 482, 382 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    Chen, M.-F., Chen, Y.-F., Ma, S.-S.: One-step implementation of a Toffoli gate of separated superconducting qubits via quantum Zeno dynamics. Quantum Inf. Process 15, 1469 (2016)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Lanyon, B.P., Barbieri, M., Almeida, M.P., Jennewein, T., Ralph, T.C., Resch, K.J., Pryde, G.J., O’Brien, J.L., Gilchrist, A., White, A.G.: Simplifying quantum logic using higher-dimensional Hilbert spaces. Nat. Phys. 5, 134 (2009)CrossRefGoogle Scholar
  11. 11.
    Mičuda, M., Sedlák, M., Straka, I., Miková, M., Dušek, M., Ježek, M., Fiurášek, J.: Efficient experimental estimation of fidelity of linear optical quantum Toffoli gate. Phys. Rev. Lett. 111, 160407 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    Mičuda, M., Stárek, R., Straka, I., Miková, M., Dušek, M., Ježek, M., Filip, R., Fiurášek, J.: Quantum controlled-Z gate for weakly interacting qubits. Phys. Rev. A 92, 022341 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    Fiurášek, J.: Linear-optics quantum Toffoli and Fredkin gates. Phys. Rev. A 73, 062313 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    Stojanović, V.M., Fedorov, A., Wallraff, A., Bruder, C.: Quantum-control approach to realizing a Toffoli gate in circuit QED. Phys. Rev. B 85, 054504 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    Wei, H.R., Deng, F.G.: Universal quantum gates on electron-spin qubits with quantum dots inside single-side optical microcavities. Opt. Express 22, 593 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    Hua, M., Tao, M.J., Deng, F.G.: Fast universal quantum gates on microwave photons with all-resonance operations in circuit QED. Sci. Rep. 5, 9274 (2015)CrossRefGoogle Scholar
  17. 17.
    Pellizzari, T., Gardiner, S.A., Cirac, J.I., Zoller, P.: Decoherence, continuous observation, and quantum computing: a cavity QED model. Phys. Rev. Lett. 75, 3788 (1995)ADSCrossRefGoogle Scholar
  18. 18.
    Rauschenbeutel, A., Nogues, G., Osnaghi, S., Bertet, P., Brune, M., Raimond, J.M., Haroche, S.: Coherent operation of a tunable quantum phase gate in cavity QED. Phys. Rev. Lett. 83, 5166 (1999)ADSCrossRefGoogle Scholar
  19. 19.
    Pachos, J.K., Beige, A.: Decoherence-free dynamical and geometrical entangling phase gates. Phys. Rev. A 69, 033817 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    Xiao, Y.F., Zou, X.B., Guo, G.C.: One-step implementation of an N-qubit controlled-phase gate with neutral atoms trapped in an optical cavity. Phys. Rev. A 75, 054303 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    Duan, L.M., Kimble, H.J.: Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    Reiserer, A., Ritter, S., Rempe, G.: Nondestructive detection of an optical photon. Science 342, 1349 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    Tiecke, T.G., Thompson, J.D., de Leon, N.P., Liu, L.R., Vuletić, V., Lukin, M.D.: Nanophotonic quantum phase switch with a single atom. Nature 508, 241 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    Reiserer, A., Kalb, N., Rempe, G., Ritter, S.: A quantum gate between a flying optical photon and a single trapped atom. Nature 508, 237 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    Duan, L.M., Wang, B., Kimble, H.J.: Robust quantum gates on neutral atoms with cavity-assisted photon scattering. Phys. Rev. A 72, 032333 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    Lin, X.M., Zhou, Z.W., Ye, M.Y., Xiao, Y.F., Guo, G.C.: One-step implementation of a multiqubit controlled-phase-flip gate. Phys. Rev. A 73, 012323 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    Cohen, I., Mølmer, K.: Deterministic quantum network for distributed entanglement and quantum computation. Phys. Rev. A 98, 030302(R) (2018)ADSCrossRefGoogle Scholar
  28. 28.
    Serafini, A., Mancini, S., Bose, S.: Distributed quantum computation via optical fibers. Phys. Rev. Lett. 96, 010503 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    Walls, D.F., Milburn, G.J.: Quantum Optics. Springer, Berlin (1994)CrossRefGoogle Scholar
  30. 30.
    Yang, Z.B., Wu, H.Z., Su, W.J., Zheng, S.B.: Quantum phase gates for two atoms trapped in separate cavities within the null- and single-excitation subspaces. Phys. Rev. A 80, 012305 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    Hao, Y.M., Lin, G.W., Xia, K.Y., Lin, X.M., Niu, Y.P., Gong, S.Q.: Quantum controlled-phase-flip gate between a flying optical photon and a Rydberg atomic ensemble. Sci. Rep. 5, 10005 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    Li, P.B., Gu, Y., Wang, K., Gong, Q.H.: Dark-state polaritons for quantum memory in a five-level M-type atomic ensemble. Phys. Rev. A 73, 032343 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    Duan, L.M., Kuzmich, A., Kimble, H.J.: Cavity QED and quantum-information processing with “hot” trapped atoms. Phys. Rev. A 67, 032305 (2003)ADSCrossRefGoogle Scholar
  34. 34.
    Spillane, S.M., Kippenberg, T.J., Painter, O.J., Vahala, K.J.: Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics. Phys. Rev. Lett. 91, 043902 (2003)ADSCrossRefGoogle Scholar
  35. 35.
    Majer, J., Chow, J.M., Gambetta, J.M., Koch, J., Johnson, B.R., Schreier, J.A., Frunzio, L., Schuster, D.I., Houck, A.A., Wallraff, A., Blais, A., Devoret, M.H., Girvin, S.M., Schoelkopf, R.J.: Coupling superconducting qubits via a cavity bus. Nature (London) 449, 443 (2007)ADSCrossRefGoogle Scholar
  36. 36.
    Aoki, T., Dayan, B., Wilcut, E., Bowen, W.P., Parkins, A.S., Kippenberg, T.J., Vahala, K.J., Kimble, H.J.: Observation of strong coupling between one atom and a monolithic microresonator. Nature (London) 443, 671 (2006)ADSCrossRefGoogle Scholar
  37. 37.
    Welte, S., Hacker, B., Daiss, S., Ritter, S., Rempe, G.: Photon-mediated quantum gate between two neutral atoms in an optical cavity. Phys. Rev. X 8, 011018 (2018)Google Scholar
  38. 38.
    Das, S., Grankin, A., Iakoupov, I., Brion, E., Borregaard, J., Boddeda, R., Usmani, I., Ourjoumtsev, A., Grangier, P., Sørensen, A.S.: Photonic controlled-PHASE gates through Rydberg blockade in optical cavities. Phys. Rev. A 93, 040303(R) (2016)ADSCrossRefGoogle Scholar
  39. 39.
    Wade, A.C.J., Mattioli, M., Mølmer, K.: Single-atom single-photon coupling facilitated by atomic-ensemble dark-state mechanisms. Phys. Rev. A 94, 053830 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsEast China University of Science and TechnologyShanghaiChina

Personalised recommendations