Secure quantum network coding based on quantum homomorphic message authentication

  • Zhen-zhen Li
  • Gang Xu
  • Xiu-Bo ChenEmail author
  • Yi-Xian Yang


As the principal security threat, pollution attacks also seriously affect the security of quantum network coding, just like they do for the classical network coding. Based on this, we first propose two secure quantum homomorphic message authentication schemes based on quantum circuit, which well resist the pollution attacks launched by outside attackers and the attackers including inside untrusted nodes over the general quantum network. Then, we apply this authentication method into our extended quantum network coding scheme over the multi-unicast network \(\mathcal {N}\), solving the quantum k-pair problem securely and perfectly. Analysis results show that our proposed quantum network coding scheme has higher security and higher quantum communication rate, compared with the existing secure scheme.


Secure quantum network coding Quantum homomorphic message authentication Pollution attacks Quantum k-pair problem 



This work was supported by National Natural Science Foundation of China (Grant Nos. 61671087, 61272514, 61170272, 61003287, 61373131), the Fok Ying Tong Education Foundation (Grant No. 131067), the Major Science and Technology Support Program of Guizhou Province (Grant No. 20183001), and Open Foundation of Guizhou Provincial Key Laboratory of Public Big Data (2018BDKFJJ016). CCF-Tencent Open Fund WeBank Special Funding(CCF-WebankRAGR20180104).


  1. 1.
    Ahlswede, R., Cai, N., Li, S.-Y.R.: Network information flow. IEEE Trans. Inf. Theory 46(4), 1204–1216 (2000)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Li, S.-Y.R., Yeung, R.W., Cai, N.: Linear network coding. IEEE Trans. Inf. Theory 49(2), 371–381 (2003)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Sung, C.W., Shum, K.W., Huang, L., Kwan, H.Y.: Linear network coding for erasure broadcast channel with feedback: complexity and algorithms. IEEE Trans. Inf. Theory 62(5), 2493–2503 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Guo, R., Zhang, Z., Liu, X., Lin, C.: Existence, uniqueness, and exponential stability analysis for complex-valued memristor-based BAM neural networks with time delays. Appl. Math. Comput. 311, 100–117 (2017)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Pang, Z., Liu, G., Zhou, D., Sun, D.: Data-based predictive control for networked nonlinear systems with packet dropout and measurement noise. J. Syst. Sci. Complex 30(5), 1072–1083 (2017)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Li, L., Wang, Z., Li, Y., Shen, H., Lu, J.: Hopf bifurcation analysis of a complex-valued neural network model with discrete and distributed delays. Appl. Math. Comput. 330, 152–169 (2018)MathSciNetGoogle Scholar
  7. 7.
    Shen, H., Song, X., Li, F., Wang, Z., Chen, B.: Finite-time \(L^{2}-L^{\infty }\) filter design for networked Markov switched singular systems: a unified method. Appl. Math. Comput. 321, 450–462 (2018)MathSciNetGoogle Scholar
  8. 8.
    Shin, W.Y., Chung, S.Y., Lee, Y.H.: Parallel opportunistic routing in wireless networks. IEEE Trans. Inf. Theory 59(10), 6290–6300 (2013)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Dong, H., Zhang, Y., Zhang, Y., Yin, B.: Generalized bilinear differential operators, binary bell polynomials, and exact periodic wave solution of boiti-leon-manna-pempinelli equation. In: Xia, T. (ed.) Abstract and Applied Analysis. Hindawi (2014)Google Scholar
  10. 10.
    Jiang, T., Jiang, Z., Ling, S.: An algebraic method for quaternion and complex least squares coneigen-problem in quantum mechanics. Appl. Math. Comput. 249, 222–228 (2014)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Hayashi, M., Iwama, K., Nishimura, H.: Quantum network coding. In: Proceedings of 2007 Symposium Theoretical Aspects of Computer Science, Lecture Notes in Computer Science, vol. 4393, pp. 610–621 (2007)Google Scholar
  12. 12.
    Hayashi, M.: Prior entanglement between senders enables perfect quantum network coding with modification. Phys. Rev. A 76(4), 040301(R) (2007)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Ma, S.Y., Chen, X.B.: Probabilistic quantum network coding of Mqudit states over the butterfly network. Opt. Commun. 283(3), 497–501 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    Kobayashi, H., Le Gall, F., Nishimura, H., Rotteler, M.: General scheme for perfect quantum network coding with free classical communication. In: Proceedings of 36th International Colloquium on Automata, Languages and Programming (ICALP), Lecture Note in Computer Science, vol. 5555, pp. 622–633 (2009)Google Scholar
  15. 15.
    Kobayashi, H., Le Gall, F., Nishimura, H., Rotteler, M.: Constructing quantum network coding schemes from classical nonlinear protocols. In: Proceedings of IEEE International Symposium Information Theory (ISIT), pp. 109–113 (2011)Google Scholar
  16. 16.
    Xu, G., Chen, X.B., Li, J., Wang, C., Yang, Y.X., Li, Z.P.: Network coding for quantum cooperative multicast. Quantum Inf. Process. 14(11), 4297–4322 (2015)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Li, J., Xu, G., Chen, X.B., Qu, Z., Niu, X.X., Yang, Y.X.: The solvability of quantum k-pair network in a measurement-based way. Sci. Rep. 7(1), 16775 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    Satoh, T., Le Gall, F., Imai, H.: Quantum network coding for quantum repeaters. Phys. Rev. A 86(3), 032331(8) (2012)ADSCrossRefGoogle Scholar
  19. 19.
    Satoh, T., Ishizaki, K., Nagayamaand, S., Meter, R.V.: Analysis of quantum network coding for realistic repeater networks. Phys. Rev. A 93(3), 032331(10) (2012)Google Scholar
  20. 20.
    Epping, M., Kampermann, H., Bruß, D.: Robust entanglement distribution via quantum network coding. New J. Phys. 18(10), 103052 (2016)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Akibue, S., Murao, M.: Network coding for distributed quantum computation over cluster and butterfly networks. IEEE Trans. Inf. Theory 62(11), 6620–6637 (2016)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Oggier, F., Fathi, H.: An authentication code against pollution attacks in network coding. IEEE/Acm Trans. Netw. 19(6), 1587–1596 (2011)CrossRefGoogle Scholar
  23. 23.
    Wu, X., Xu, Y., Yuen, C., Xiang, L.: A tag encoding scheme against pollution attack to linear network coding. IEEE Trans. Parallel Distrib. Syst. 25(1), 33–42 (2014)CrossRefGoogle Scholar
  24. 24.
    Agrawal, S., Boneh, D.: Homomorphic MACs: MAC-based integrity for network coding. In: International Conference on Applied Cryptography and Network Security, pp. 292–305 (2009)Google Scholar
  25. 25.
    Cheng, C., Jiang, T.: A novel homomorphic MAC scheme for authentication in network coding. IEEE Commun. Lett. 15(11), 1228–1230 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    Cheng, C., Jiang, T.: An efficient homomorphic MAC with small key size for authentication in network coding. IEEE Trans. Comput. 62(10), 2096–2100 (2013)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Shang, T., Pei, Z., Zhao, X.J., Liu, J.W.: Quantum network coding against pollution attacks. IEEE Commun. Lett. 20(7), 1369–1372 (2016)Google Scholar
  28. 28.
    Owari, M., Kato, G., Hayashi, M.: Single-shot secure quantum network coding on butterfly network with free public communication. Quantum Sci. Technol. 3(1), 014001 (2018)ADSCrossRefGoogle Scholar
  29. 29.
    Curty, M., Santos, D.J.: Quantum authentication of classical messages. Phy. Rev. A 64(6), 062309 (2001)ADSCrossRefGoogle Scholar
  30. 30.
    Barnum, H., Crépeau, C., Gottesman, D., Smith, A., Tapp, A.: Authentication of quantum messages. In: The 43rd Annual IEEE Symposium on Foundations of Computer Science, pp. 449–458 (2002)Google Scholar
  31. 31.
    Boneh, D., Zhandry, M.: Quantum-secure message authentication codes. In: Annual International Conference on the Theory and Applications of Cryptographic Techniques, pp. 592–608 (2013)Google Scholar
  32. 32.
    Bartkiewicz, K., Černoch, A., Lemr, K.: Using quantum routers to implement quantum message authentication and Bell-state manipulation. Phys. Rev. A 90(2), 022335 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    Alagic, G., Majenz, C., Russell, A., Song, F.: Quantum-secure message authentication via blind-unforgeability. arXiv:1803.03761 (2018)
  34. 34.
    Lo, H.K., Chau, H.F., Ardehali, M.: Efficient quantum key distribution scheme and a proof of its unconditional security. J. Cryptol. 18(2), 133–165 (2005)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Tan, X., Zhang, X.: Controlled quantum secure direct communication by entanglement distillation or generalized measurement. Quantum Inf. Process. 15(5), 2137–2154 (2016)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    Deng, F.G., Li, X.H., Zhou, H.Y.: Efficient high-capacity quantum secret sharing with two-photon entanglement. Phys. Lett. A 372(12), 1957–1962 (2008)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Tseng, H.Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inf. Process. 11(2), 373–384 (2012)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Giovannetti, V., Lloyd, S., Maccone, L.: Quantum private queries. Phys. Rev. Lett. 100(23), 230502 (2008)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    Chen, X.B., Su, Y., Xu, G., Sun, Y., Yang, Y.X.: Quantum state secure transmission in network communications. Inf. Sci. 276, 363–376 (2014)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91(5), 057901 (2003)ADSCrossRefGoogle Scholar
  41. 41.
    Lo, H.K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94(23), 230504 (2005)ADSCrossRefGoogle Scholar
  42. 42.
    Lim, C.C.W., Curty, M., Walenta, N., Xu, F., Zbinden, H.: Concise security bounds for practical decoy-state quantum key distribution. Phys. Rev. A 89(2), 022307 (2014)ADSCrossRefGoogle Scholar
  43. 43.
    Dougherty, R., Zeger, K.: Nonreversibility and equivalent constructions of multiple-unicast networks. IEEE Trans. Inf. Theory 52(11), 5067–5077 (2006)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993)ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In Proceedings of IEEE International Conference on Computers System and Signal Processing, pp. 175–179 (1984)Google Scholar
  46. 46.
    Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283(5410), 2050–2056 (1999)ADSCrossRefGoogle Scholar
  47. 47.
    Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441 (2000)ADSCrossRefGoogle Scholar
  48. 48.
    Leung, D., Oppenheim, J., Winter, A.: Quantum network communication—the butterfly and beyond. IEEE Trans. Inf. Theory 56(7), 3478–3490 (2010)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Nishimura, H.: Quantum network coding—how can network coding be applied to quantum information? In Proceedings of 2013 IEEE International Symposium on Network Coding, pp. 1–5 (2013)Google Scholar
  50. 50.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Zhen-zhen Li
    • 1
  • Gang Xu
    • 1
  • Xiu-Bo Chen
    • 1
    • 2
    Email author
  • Yi-Xian Yang
    • 1
    • 2
  1. 1.Information Security Center, State Key Laboratory of Networking and Switching TechnologyBeijing University of Posts and TelecommunicationsBeijingChina
  2. 2.Guizhou University, Guizhou Provincial Key Laboratory of Public Big DataGuiyangChina

Personalised recommendations