Advertisement

Multiparty quantum secure direct communication immune to collective noise

  • Ye-Feng HeEmail author
  • Wen-Ping Ma
Article
  • 64 Downloads

Abstract

In this paper, the N-particle GHZ states are used as quantum resources for multiparty quantum secure direct communication. Three new multiparty quantum secure direct communication protocols are proposed, which are based on the ideal quantum channels, the collective–dephasing noise channels and the collective–rotation noise channels, respectively. With the help of logical quantum states, the latter two protocols can be immune to the collective–dephasing noise and the collective–rotation noise, respectively. The security analysis shows that the Trojan horse attacks and the teleportation attack are automatically resisted because of the one-way transmission of quantum states in quantum channels. The use of the decoy states (or decoy logical qubits) also makes the three protocols secure against other kinds of attacks. Moreover, all of them have no information leakage problem.

Keywords

Quantum cryptography Quantum secure direct communication Collective noise Logical quantum state Information leakage 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61802302, 61772418, 61472472) and the Basic Research Project of Natural Science of Shaanxi Province (Grant No. 2017JM6037).

References

  1. 1.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, pp. 175–179 (1984)Google Scholar
  2. 2.
    Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    Wang, L.L., Ma, W.P.: Controlled quantum secure communication protocol with single photons in both polarization and spatial-mode degrees of freedom. Mod. Phys. Lett. B 30, 1650051 (2016)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    He, Y.F., Ma, W.P.: Quantum key agreement protocols with four-qubit cluster states. Quantum Inf. Process. 14, 3483–3498 (2015)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Xu, G.B., Wen, Q.Y., Qin, S.J., et al.: Quantum nonlocality of multipartite orthogonal product states. Phys. Rev. A 93, 032341 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    Liu, F., Gao, F., Wen, Q.Y.: Linear monogamy of entanglement in three-qubit systems. Sci. Rep. 5, 16745 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    Nguyen, B.A.: Quantum dialogue. Phys. Lett. A 328, 6–10 (2004)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Jin, X.R., Ji, X., Zhang, Y.Q., et al.: Three-party quantum secure direct communication based on GHZ states. Phys. Lett. A 354, 67–70 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    Man, Z.X., Xia, Y.J.: Controlled bidirectional quantum direct communication by using a GHZ state. Chin. Phys. Lett. 23, 1680–1682 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    Ji, X., Zhang, S.: Secure quantum dialogue based on single-photon. Chin. Phys. 15, 1418–1420 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    Yin, A.H., Tang, Z.H.: Two-step efficient quantum dialogue with three-particle entangled W state. Int. J. Theor. Phys. 53, 2760–2768 (2014)CrossRefGoogle Scholar
  13. 13.
    Gao, F., Qin, S.J., Wen, Q.Y., et al.: Comment on: three-party quantum secure direct communication based on GHZ states. Phys. Lett. A 372, 3333–3336 (2008)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Tan, Y.G., Cai, Q.Y.: Classical correlation in quantum dialogue. Int. J. Quantum Inf. 6, 325–329 (2008)CrossRefGoogle Scholar
  15. 15.
    Luo, Y.P., Lin, C.Y., Hwang, T.: Efficient quantum dialogue using single photons. Quantum Inf. Process. 13, 2451–2461 (2014)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Ye, T.Y.: Quantum dialogue without information leakage using a single quantum entangled state. Int. J. Theor. Phys. 53, 3719–3727 (2014)CrossRefGoogle Scholar
  17. 17.
    Zhou, N.R., Wu, G.T., Gong, L.H., et al.: Secure quantum dialogue protocol based on W states without information leakage. Int. J. Theor. Phys. 52, 3204–3211 (2013)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Man, Z.X., Xia, Y.J.: Improvement of security of three-party quantum secure direct communication based on GHZ states. Chin. Phys. Lett. 24, 15–18 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    Wang, M.Y., Yan, F.L.: Three-party simultaneous quantum secure direct communication scheme with EPR pairs. Chin. Phys. Lett. 24, 2486 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    Chong, S.K., Hwang, T.: The enhancement of three-party simultaneous quantum secure direct communication scheme with EPR pairs. Opt. Commun. 284, 515–518 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    Wang, L.Y., Chen, X.B., Xu, G., et al.: Information leakage in three-party simultaneous quantum secure direct communication with EPR pairs. Opt. Commun. 284, 1719–1720 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    Yin, X.R., Ma, W.P., Shen, D.S., et al.: Efficient three-party quantum secure direct communication with EPR Pairs. J. Quantum Inf. Sci. 1, 3 (2013)Google Scholar
  23. 23.
    Wang, L.L., Ma, W.P., Wang, M.L., Shen, D.S.: Three-party quantum secure direct communication with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 55, 2490–2499 (2016)CrossRefGoogle Scholar
  24. 24.
    Shen, D.S., Ma, W.P., Yin, X.R., et al.: Quantum dialogue with authentication based on Bell states. Int. J. Theor. Phys. 52, 1825–1835 (2013)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Yin, X.R., Ma, W.P., Liu, W.Y., Shen, D.S.: Efficient bidirectional quantum secure communication with two-photon entanglement. Quantum Inf. Process. 12, 3903–3102 (2013)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Walton, Z.D., Abouraddy, A.F., Sergienko, A.V., et al.: Decoherence-free subspaces in quantum key distribution. Phys. Rev. Lett. 91, 087901 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    Yang, C.W., Hwang, T.: Quantum dialogue protocols immune to collective noise. Quantum Inf. Process. 12, 2131–2142 (2013)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Ye, T.Y.: Robust quantum dialogue based on the entanglement swapping between any two logical Bell states and the shared auxiliary logical Bell state. Quantum Inf. Process. 14, 1469–1486 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    Ye, T.Y.: Quantum secure direct dialogue over collective noise channels based on logical Bell states. Quantum Inf. Process. 14, 1487–1499 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    Wu, D., Lv, H.J., Xie, G.J.: Robust anti-collective noise quantum secure direct dialogue using logical Bell states. Int. J. Theor. Phys. 55, 457–469 (2016)CrossRefGoogle Scholar
  31. 31.
    Ye, T.Y.: Fault-tolerant authenticated quantum dialogue using logical Bell states. Quantum Inf. Process. 14, 3499–3514 (2015)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    He, Y.F., Ma, W.P.: Three-party quantum secure direct communication against collective noise. Quantum Inf. Process. 16, 252 (2017)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351, 23–25 (2006)ADSCrossRefGoogle Scholar
  34. 34.
    Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)ADSCrossRefGoogle Scholar
  35. 35.
    Liu, F., Su, Q., Wen, Q.Y.: Eavesdropping on multiparty quantum secret sharing scheme based on the phase shift operations. Int. J. Theor. Phys. 53, 1730–1737 (2014)CrossRefGoogle Scholar
  36. 36.
    He, Y.F., Ma, W.P.: Two-party quantum key agreement protocol with four-particle entangled states. Mod. Phys. Lett. B 30, 1650332 (2016)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    He, Y.F., Ma, W.P.: Two-party quantum key agreement based on four-particle GHZ states. Int. J. Quantum Inf. 14, 1650007 (2016)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Gao, F., Wen, Q.Y., Zhu, F.C.: Teleportation attack on the QSDC protocol with a random basis and order. Chin. Phys. B 17, 3189–3193 (2008)ADSCrossRefGoogle Scholar
  39. 39.
    He, Y.F., Ma, W.P.: Two-party quantum key agreement against collective noise. Quantum Inf. Process. 15, 5023–5035 (2016)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635–5638 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Telecommunications and Information EngineeringXi’an University of Posts and TelecommunicationsXi’anChina
  2. 2.State Key Laboratory of Integrated Service NetworksXidian UniversityXi’anChina

Personalised recommendations