Advertisement

Simulated versus reduced noise quantum annealing in maximum independent set solution to wireless network scheduling

  • Chi Wang
  • Edmond JonckheereEmail author
Article
  • 62 Downloads

Abstract

With the introduction of adiabatic quantum computation (AQC) and its implementation on D-Wave annealers, there has been a constant quest for benchmark problems that would allow for a fair comparison between such classical combinatorial optimization techniques as simulated annealing (SA) and AQC-based optimization. Such a benchmark case study has been the scheduling problem to avoid interference in the very specific Dirichlet protocol in wireless networking, where it was shown that the gap expansion to retain noninterference solutions benefits AQC better than SA. Here, we show that the same gap expansion allows for significant improvement in the D-Wave 2X solution compared with that of its predecessor, the D-Wave II.

Keywords

Quantum computing Graph theory Machine learning algorithms Optimal scheduling Simulated annealing Wireless application protocol 

References

  1. 1.
    Deutsch, D.: Quantum theory, the Church–Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A 400, 97–117 (1985)MathSciNetzbMATHADSCrossRefGoogle Scholar
  2. 2.
    Albash, T., Lidar, D.A.: Adiabatic quantum computation. Rev. Mod. Phys. 90, 015002 (2018)MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    Shor, P.: Algorithms for quantum computation: discrete logarithms and factoring. SIAM J. Comput. 26(5), 1484–1509 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Grover, L.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on the Theory of Computing, Philadelphia, PA, pp. 212–219 (1996)Google Scholar
  5. 5.
    Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Quantum computation by adiabatic evolution. arXiv:quant-ph/0001106 (2000)
  6. 6.
    Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)MathSciNetzbMATHADSCrossRefGoogle Scholar
  7. 7.
    Boixo, S., Rnnow, T.F., Isakov, S.V., Wang, Z., Wecker, D., Lidar, D.A., Martinis, J.M., Troyer, M.: Evidence of quantum annealing with more than one hundred qubits. Nat. Phys. 10(3), 218–224 (2014)CrossRefGoogle Scholar
  8. 8.
    Rnnow, T.F., Wang, Z., Job, J., Boixo, S., Isakov, S.V., Wecker, D., Martinis, J.M., Lidar, D.A., Troyer, M.: Defining and detecting quantum speedup. Science 345(6195), 420–424 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    Lanting, T.: Entanglement in a quantum annealing processor. Phys. Rev. X 4, 021041 (2014)Google Scholar
  10. 10.
    Boixo, S., et al.: Computational multiqubit tunnelling in programmable quantum annealers. Nat. Commun. 7, 10327 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    Hen, I., Job, J., Albash, T., Rnnow, T.F., Troyer, M., Lidar, D.A.: Probing for quantum speedup in spin glass problems with planted solutions. Phys. Rev. A 92(4), 042325 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    Katzgraber, H., Hamze, F., Andrist, R.: Glassy chimeras could be blind to quantum speedup: designing better benchmarks for quantum annealing machines. Phys. Rev. X 4, 021008 (2014)Google Scholar
  13. 13.
    King, J., et al.: Benchmarking a quantum annealing processor with the time-to-target metric. arXiv:1508.05087 (2015)
  14. 14.
    Denchev, V., et al.: What is the computational value of finite range tunneling. Phys. Rev. X 6, 031015 (2016)Google Scholar
  15. 15.
    Childs, A.M., Maslov, D., Nam, Y., Ross, N.J., Su, Y.: Towards the first quantum simulation with quantum speedup. arXiv:1711.10980v1 [quant-ph] 29 Nov 2017]
  16. 16.
    Pudenz, K., Albash, T., Lidar, D.A.: Error corrected quantum annealing with hundreds of qubits. Nat. Commun. 5, 3243 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    Boxio, S., et al.: Characterizing quantum supremacy in near-term devices. Nat. Phys. 14, 595 (2018).  https://doi.org/10.1038/s41567-018-0124-x CrossRefGoogle Scholar
  18. 18.
    Wu, K.J.: Solving practical problems with quantum computing hardware. ASCR Work-shop on Quantum Computing for Science (2015). https://doi.org/10.13140/RG.2.1.3656.5200
  19. 19.
    King, A.D., McGeoch, C.C.: Algorithm engineering for a quantum annealing platform. arXiv:1410.2628 (2014)
  20. 20.
    Perdomo-Ortiz, A., Benedetti, M., Realpe-Gomez, J., Biswas, R.: Opportunities and challenges for quantum-assisted machine learning in near-term quantum computers. arXiv:1708.09757v2 [quant-ph] 19 Mar (2018)
  21. 21.
    Banirazi, R., Jonckheere, E., Krishnamachari, B.: Heat diffusion algorithm for resource allocation and routing in multihop wireless networks. In: GLOBECOM, Anaheim, California, USA, pp. 5915–5920 (2012)Google Scholar
  22. 22.
    Banirazi, R., Jonckheere, E., Krishnamachari, B.: Dirichlet’s principle on multiclass multihop wireless networks: minimum cost routing subject to stability. Analysis and Simulation of Wireless and Mobile Systems, Montreal, Canada, pp. 31–40 (2014)Google Scholar
  23. 23.
    Banirazi, R., Jonckheere, E., Krishnamachari, B.: Heat diffusion optimal dynamic routing for multiclass multihop wireless networks. In: INFOCOM, Toronto, Canada, pp. 325–333 (2014)Google Scholar
  24. 24.
    Ghosh, P., Ren, He, Banirazi, R., Krishnamachari, B., Jonckheere, E.: Empirical evaluation of the heat-diffusion collection protocol for wireless sensor networks. Comput. Netw. (COMNET) 127, 217–232 (2017)CrossRefGoogle Scholar
  25. 25.
    Banirazi, R., Jonckheere, E., Krishnamachari, B., Minimum delay in class of throughput-optimal control policies on wireless networks. In: American Control Conference (ACC), Portland, OR, pp. 2668–2675 (2014)Google Scholar
  26. 26.
    Tassiulas, L., Ephremides, A.: Stability properties of constrained queueing systems and scheduling policies for maximal throughput in multihop radio networks. IEEE Trans. Autom. Control 37(12), 1936–1948 (1992)zbMATHCrossRefGoogle Scholar
  27. 27.
    Wang, C., Chen, H., Jonckheere, E.: Quantum versus simulated annealing in wireless interference network optimization. Sci. Rep. 6, 25797 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    Jonckheere, E.A., Rezakhani, A.T., Ahmad, F.: Differential topology of adiabatically controlled quantum processes. Quantum Inf. Process. 12(3), 1515–1538 (2013). Special Issue on Quantum ControlMathSciNetzbMATHADSCrossRefGoogle Scholar
  29. 29.
    Jonckheere, E.A., Ahmad, F., Gutkin, E.: Differential topology of numerical range. Linear Algebra Appl. 279(1–3), 227–254 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Wang, C., Jonckheere, E., Brun, T.: Ollivier–Ricci curvature and fast approximation to tree-width in embeddability of QUBO problems. In: ISCCSP, Athens, Greece, pp. 639–642 (2014)Google Scholar
  31. 31.
    Wang, C., Jonckheere, E., Brun, T.: Differential geometric treewidth estimation in adiabatic quantum computation. Quantum Inf. Process. 15(10), 3951–3966 (2016)MathSciNetzbMATHADSCrossRefGoogle Scholar
  32. 32.
    Wang, C., Jonckheere, E., Banirazi, R.: Wireless network capacity versus Ollivier–Ricci curvature under heat diffusion (HD) protocol. In: American Control Conference (ACC 2014), Portland, OR, pp. 3536–3541 (2014)Google Scholar
  33. 33.
    Wang, C., Jonckheere, E., Banirazi, R.: Interference constrained network performance control based on curvature control. In: 2016 American Control Conference, Boston, USA, pp. 6036–6041 (2016)Google Scholar
  34. 34.
    Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor network. IEEE Commun. Mag. 40(8), 102–114 (2002)CrossRefGoogle Scholar
  35. 35.
    Karp, B., Kung, H.T.: GPSR: Greedy perimeter stateless routing for wireless networks. In: Proceedings ACM MobiCom’00, Boston, MA, pp. 243–254 (2000)Google Scholar
  36. 36.
    Official homepage of the IEEE 802.11 working group. http://www.ieee802.org/11. Accessed 2016
  37. 37.
    Bianchi, G.: Performance analysis of the IEEE 802.11 distributed coordination function. IEEE J. Sel. Areas Commun. 18, 535–547 (2000)CrossRefGoogle Scholar
  38. 38.
    Cali, F.: Dynamic tuning of the IEEE 802.11 protocol to achieve a theoretical throughput limit. IEEE/ACM Trans. Netw. 8, 785–799 (2000)CrossRefGoogle Scholar
  39. 39.
    Jain, K., Padhey, J., Padmanabhan, V.N., Qiu, L.: Impact of interference on multi-hop wireless network performance. In: MobiCom ’03, San Diego, California, USA, pp. 66–80 (2003)Google Scholar
  40. 40.
    Alicherry, A., Bhatia, R., Li, L.E.: Joint channel assignment and routing for throughput optimization in multiradio wireless mesh networks. IEEE J. Sel. Areas Commun. 24(11), 1960–1971 (2006)CrossRefGoogle Scholar
  41. 41.
    Kodialam, M., Nandagopal, T.: Characterizing the capacity region in multi-radio multi-channel wireless mesh networks. In: MobiCom’05, ACM, Cologne, Germany, pp. 73–87 (2005)Google Scholar
  42. 42.
    Sanghavi, S.S., Bui, L., Srikant, R.: Distributed link scheduling with constant overhead. ACM SIGMETRICS 35(1), 313–324 (2007)CrossRefGoogle Scholar
  43. 43.
    Wan, P.J.: Multiflows in multihop wireless networks. In: MobiHoc’09, New Orleans, LA, USA, pp. 85–94 (2009)Google Scholar
  44. 44.
    Blough, D.M., Resta, G., Sant, P.: Approximation algorithms for wireless link scheduling with SINR-based interference. IEEE Trans. Netw. 18(6), 1701–1712 (2010)CrossRefGoogle Scholar
  45. 45.
    Chafekar, D., Anil Kumar, V.S., Marathe, M.V., Parthasarathy, S., Srinivasan, A.: Capacity of wireless networks under SINR interference constraints. Wirel. Netw. 17, 1605–1624 (2011)CrossRefGoogle Scholar
  46. 46.
    Moscibroda, T., Wattenhofer, R., Zollinger, A.: Topology control meets SINR: the scheduling complexity of arbitrary topologies. In: MobiHoc’06, ACM, Florence, Italy, pp. 310–321 (2006)Google Scholar
  47. 47.
    Gupta, P., Kumar, P.R.: The capacity of wireless networks. IEEE Trans. Inf. Theory 46(2), 388–404 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Andrews, M., Dinitz, M.: Maximizing capacity in arbitrary wireless networks in the SINR model: complexity and game theory. In: INFOCOM’09, Rio de Janeiro, pp. 1332–1340 (2009)Google Scholar
  49. 49.
    Sharma, G., Mazumdar, R., Shroff, N.: On the complexity of scheduling in wireless networks. In: MobiCom’06, Proceedings of the 12th Annual International Conference on Mobile Computing and Networking, Los Angeles, CA, pp. 227–238 (2006)Google Scholar
  50. 50.
    Edmonds, J.: Paths, trees, and flowers. Can. J. Math. 17, 449–467 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Dimakis, A., Walrand, J.: Sufficient conditions for stability of longest-queue-first scheduling: second-order properties using fluid limits. Adv. Appl. Probab. 38(2), 505–521 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    Joo, C., Lin, X., Shroff, N.: Understanding the capacity region of the greedy maximal scheduling algorithm in multi-hop wireless networks. IEEE/ACM Trans. Netw. 17(4), 1132–1145 (2009)CrossRefGoogle Scholar
  53. 53.
    Zussman, G., Brzezinski, A., Modiano, E.: Multihop local pooling for distributed throughput maximization in wireless networks. In: INFOCOM’08, Phoenix, Arizona (2008)Google Scholar
  54. 54.
    Leconte, M., Ni, J., Srikant, R.: Improved bounds on the throughput efficiency of greedy maximal scheduling in wireless networks. In: MOBIHOC’09, pp. 165–174 (2009)Google Scholar
  55. 55.
    Li, B., Boyaci, C., Xia, Y.: A refined performance characterization of longest-queue-first policy in wireless networks. In: ACM MOBIHOC, New York, NY, USA, pp. 65–74 (2009)Google Scholar
  56. 56.
    Brzezinski, A., Zussman, G., Modiano, E.: Distributed throughput maximization in wireless mesh networks via pre-partitioning. IEEE/ACM Trans. Netw. 16(6), 1406–1419 (2008)CrossRefGoogle Scholar
  57. 57.
    Proutiere, A., Yi Y., Chiang, M.: Throughput of random access without message passing. In: 42nd Annual Conference on Information Sciences and Systems, Princeton, NJ, USA, pp. 509–514 (2008)Google Scholar
  58. 58.
    Jonckheere, E., Lou, M., Bonahon, F., Baryshnikov, Y.: Euclidean versus hyperbolic congestion in idealized versus experimental networks. Internet Math. 7(1), 1–27 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    Homer, S., Peinado, M.: Experiments with polynomial-time clique approximation algorithms on very large graphs. Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, volume 26 of DIMACS Series. American Mathematical Society, Providence, RI (1996)Google Scholar
  60. 60.
    Xu, X., Ma, J., An, H.W.: Improved simulated annealing algorithm for the maximum independent set problem. Intelligent Computing, Volume 4113 of the series Lecture Notes in Computer Science, pp. 822–831 (2006)Google Scholar
  61. 61.
    Kim, Y.G., Lee, M.G.: Scheduling multi-channel and multi-timeslot in time constrained wireless sensor networks via simulated annealing and particle swarm optimization. IEEE Commun. Mag. 52(1), 122–129 (2014)CrossRefGoogle Scholar
  62. 62.
    Mappar, M., Rahmani, A.M., Ashtari, A.H.: A new approach for sensor scheduling in wireless sensor networks using simulated annealing. In: ICCIT ’09. Fourth International Conference on Computer Sciences and Convergence Information Technology, Seoul, Korea, pp. 746–750 (2009)Google Scholar
  63. 63.
    Grossman, T.: Applying the INN model to the max clique problem. Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, volume 26 of DIMACS Series. American Mathematical Society, Providence, RI (1996)Google Scholar
  64. 64.
    Jagota, A.: Approximating maximum clique with a Hopfield network. IEEE Trans. Neural Netw. 6, 724–735 (1995)CrossRefGoogle Scholar
  65. 65.
    Jagota, A., Sanchis, L., Ganesan, R.: Approximately solving maximum clique using neural networks and related heuristics. Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, volume 26 of DIMACS Series. American Mathematical Society, Providence, RI (1996)Google Scholar
  66. 66.
    Bui, T.N., Eppley, P.H.: A hybrid genetic algorithm for the maximum clique problem. In: Proceedings of the 6th International Conference on Genetic Algorithms, Pittsburgh, PA, pp. 478–484 (1995)Google Scholar
  67. 67.
    Hifi, M.: A genetic algorithm-based heuristic for solving the weighted maximum independent set and some equivalent problems. J. Oper. Res. Soc. 48, 612–622 (1997)zbMATHCrossRefGoogle Scholar
  68. 68.
    Marchiori, E.: Genetic, iterated and multistart local search for the maximum clique problem. Applications of Evolutionary Computing. volume 2279 of Lecture Notes in Computer Science, pp. 112–121. Springer, Berlin (2002)Google Scholar
  69. 69.
    Feo, T.A., Resende, M.: A greedy randomized adaptive search procedure for maximum independent set. Oper. Res. 42, 860–878 (1994)zbMATHCrossRefGoogle Scholar
  70. 70.
    Battiti, R., Protasi, M.: Reactive local search for the maximum clique problem. Algorithmica 29, 610–637 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  71. 71.
    Friden, C., Hertz, A., de Werra, D.: Stabulus: a technique for finding stable sets in large graphs with tabu search. Computing 42, 35–44 (1989)zbMATHCrossRefGoogle Scholar
  72. 72.
    Mannino, C., Stefanutti, E.: An augmentation algorithm for the maximum weighted stable set problem. Comput. Optim. Appl. 14, 367–381 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  73. 73.
    Soriano, P., Gendreau, M.: Tabu search algorithms for the maximum clique problem. Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, volume 26 of DIMACS Series. American Mathematical Society, Providence, RI (1996)Google Scholar
  74. 74.
    Reichardt, B.W.: The quantum adiabatic optimization algorithm and local minima. In: STOC ’04, Proceedings of the Thirty-Sixth Annual ACM Symposium on Theory of Computing, Chicago, IL, pp. 502–510 (2004)Google Scholar
  75. 75.
    Felzenszwalb, P.F.: Dynamic programming and graph algorithms in computer vision. IEEE Trans. Pattern Anal. Mach. Intell. 33(4), 721–740 (2011)CrossRefGoogle Scholar
  76. 76.
    Trummer, I., Koch, C.: Multiple query optimization on the D-Wave 2X adiabatic quantum computer. Proc. VLDB Endow. 9(9), 648–659 (2016)CrossRefGoogle Scholar
  77. 77.
    O’Gorman, B., Babbush, R., Perdomo-Ortiz, A., Aspuru-Guzik, A., Smelyanskiy, V.: Bayesian network structure learning using quantum annealing. Eur. Phys. J. Spec. Top. 224(1), 163–188 (2015)CrossRefGoogle Scholar
  78. 78.
    Rieffel, E.G., Venturelli, D., O’Gorman, B., Do, M.B., Prystay, E., Smelyanskiy, V.N.: A case study in programming a quantum annealer for hard operational planning problems. Quantum Inf. Process. 14(1), 1–36 (2015)zbMATHADSCrossRefGoogle Scholar
  79. 79.
    Perdomo-Ortiz, A., Fluegemann, J., Narasimhan, S., Biswas, R., Smelyanskiy, V.N.: A quantum annealing approach for fault detection and diagnosis of graph-based systems. Eur. Phys. J. Spec. Top. 224(1), 131–148 (2015)CrossRefGoogle Scholar
  80. 80.
    Zick, K.M., Shehab, O., French, M.: Experimental quantum annealing: case study involving the graph isomorphism problem. Sci. Rep. 5, 1168 (2015).  https://doi.org/10.1038/srep11168 CrossRefGoogle Scholar
  81. 81.
    Benedetti, M., Realpe-Gmez, J., Biswas, R., Perdomo-Ortiz, A.: Estimation of effective temperatures in a quantum annealer and its impact in sampling applications: a case study towards deep learning applications. Phys. Rev. A 94(2), 022308 (2016)ADSCrossRefGoogle Scholar
  82. 82.
    Choi, V.: Minor-embedding in adiabatic quantum computation: I. The parameter setting problem. Quantum Inf. Process. 7, 193–209 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  83. 83.
    Bian, Z., Chudak, F., Macready, W.G., Clark, L., Gaitan, F.: Experimental determination of Ramsey numbers. Phys. Rev. Lett. 111, 130505 (2013)ADSCrossRefGoogle Scholar
  84. 84.
    Choi, V.: Minor-embedding in adiabatic quantum computation: II. Minor-universal graph design. Quantum Inf. Process. 10(3), 343–353 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  85. 85.
    Vinci, W., et al.: Quantum annealing correction with minor embedding. Phys. Rev. A 92, 042310 (2015)ADSCrossRefGoogle Scholar
  86. 86.
    Vinci, W., Albash, T., Lidar, D.A.: Nested quantum annealing correction. npj Quantum Inf. 2, 16017 (2016)ADSCrossRefGoogle Scholar
  87. 87.
    Mishra, A., Albash, T., Lidar, D.A.: Performance of two different quantum annealing correction codes. Quantum Inf. Process. 15(2), 609–636 (2016)MathSciNetzbMATHADSCrossRefGoogle Scholar
  88. 88.
    Isakov, S.V., Zintchenko, I.N., Rnnow, T.F., Troyer, M.: Optimized simulated annealing for Ising spin glasses. Comput. Phys. Commun. 192, 265–271 (2015)MathSciNetzbMATHADSCrossRefGoogle Scholar
  89. 89.
    Ollivier, Y.: Ricci curvature on Markov chains on metric spaces. J. Funct. Anal. 256(3), 810–864 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  90. 90.
    Bauer, F., Jost, J., Liu, S.: Ollivier–Ricci curvature and the spectrum of the normalized graph Laplace operator. Math. Res. Lett. 19(6), 1185–1205 (2012)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical EngineeringUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.TerraQuantaChengduChina

Personalised recommendations