Simulated versus reduced noise quantum annealing in maximum independent set solution to wireless network scheduling
Article
First Online:
- 62 Downloads
Abstract
With the introduction of adiabatic quantum computation (AQC) and its implementation on D-Wave annealers, there has been a constant quest for benchmark problems that would allow for a fair comparison between such classical combinatorial optimization techniques as simulated annealing (SA) and AQC-based optimization. Such a benchmark case study has been the scheduling problem to avoid interference in the very specific Dirichlet protocol in wireless networking, where it was shown that the gap expansion to retain noninterference solutions benefits AQC better than SA. Here, we show that the same gap expansion allows for significant improvement in the D-Wave 2X solution compared with that of its predecessor, the D-Wave II.
Keywords
Quantum computing Graph theory Machine learning algorithms Optimal scheduling Simulated annealing Wireless application protocolReferences
- 1.Deutsch, D.: Quantum theory, the Church–Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A 400, 97–117 (1985)MathSciNetzbMATHADSCrossRefGoogle Scholar
- 2.Albash, T., Lidar, D.A.: Adiabatic quantum computation. Rev. Mod. Phys. 90, 015002 (2018)MathSciNetADSCrossRefGoogle Scholar
- 3.Shor, P.: Algorithms for quantum computation: discrete logarithms and factoring. SIAM J. Comput. 26(5), 1484–1509 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
- 4.Grover, L.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on the Theory of Computing, Philadelphia, PA, pp. 212–219 (1996)Google Scholar
- 5.Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Quantum computation by adiabatic evolution. arXiv:quant-ph/0001106 (2000)
- 6.Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)MathSciNetzbMATHADSCrossRefGoogle Scholar
- 7.Boixo, S., Rnnow, T.F., Isakov, S.V., Wang, Z., Wecker, D., Lidar, D.A., Martinis, J.M., Troyer, M.: Evidence of quantum annealing with more than one hundred qubits. Nat. Phys. 10(3), 218–224 (2014)CrossRefGoogle Scholar
- 8.Rnnow, T.F., Wang, Z., Job, J., Boixo, S., Isakov, S.V., Wecker, D., Martinis, J.M., Lidar, D.A., Troyer, M.: Defining and detecting quantum speedup. Science 345(6195), 420–424 (2014)ADSCrossRefGoogle Scholar
- 9.Lanting, T.: Entanglement in a quantum annealing processor. Phys. Rev. X 4, 021041 (2014)Google Scholar
- 10.Boixo, S., et al.: Computational multiqubit tunnelling in programmable quantum annealers. Nat. Commun. 7, 10327 (2016)ADSCrossRefGoogle Scholar
- 11.Hen, I., Job, J., Albash, T., Rnnow, T.F., Troyer, M., Lidar, D.A.: Probing for quantum speedup in spin glass problems with planted solutions. Phys. Rev. A 92(4), 042325 (2015)ADSCrossRefGoogle Scholar
- 12.Katzgraber, H., Hamze, F., Andrist, R.: Glassy chimeras could be blind to quantum speedup: designing better benchmarks for quantum annealing machines. Phys. Rev. X 4, 021008 (2014)Google Scholar
- 13.King, J., et al.: Benchmarking a quantum annealing processor with the time-to-target metric. arXiv:1508.05087 (2015)
- 14.Denchev, V., et al.: What is the computational value of finite range tunneling. Phys. Rev. X 6, 031015 (2016)Google Scholar
- 15.Childs, A.M., Maslov, D., Nam, Y., Ross, N.J., Su, Y.: Towards the first quantum simulation with quantum speedup. arXiv:1711.10980v1 [quant-ph] 29 Nov 2017]
- 16.Pudenz, K., Albash, T., Lidar, D.A.: Error corrected quantum annealing with hundreds of qubits. Nat. Commun. 5, 3243 (2014)ADSCrossRefGoogle Scholar
- 17.Boxio, S., et al.: Characterizing quantum supremacy in near-term devices. Nat. Phys. 14, 595 (2018). https://doi.org/10.1038/s41567-018-0124-x CrossRefGoogle Scholar
- 18.Wu, K.J.: Solving practical problems with quantum computing hardware. ASCR Work-shop on Quantum Computing for Science (2015). https://doi.org/10.13140/RG.2.1.3656.5200
- 19.King, A.D., McGeoch, C.C.: Algorithm engineering for a quantum annealing platform. arXiv:1410.2628 (2014)
- 20.Perdomo-Ortiz, A., Benedetti, M., Realpe-Gomez, J., Biswas, R.: Opportunities and challenges for quantum-assisted machine learning in near-term quantum computers. arXiv:1708.09757v2 [quant-ph] 19 Mar (2018)
- 21.Banirazi, R., Jonckheere, E., Krishnamachari, B.: Heat diffusion algorithm for resource allocation and routing in multihop wireless networks. In: GLOBECOM, Anaheim, California, USA, pp. 5915–5920 (2012)Google Scholar
- 22.Banirazi, R., Jonckheere, E., Krishnamachari, B.: Dirichlet’s principle on multiclass multihop wireless networks: minimum cost routing subject to stability. Analysis and Simulation of Wireless and Mobile Systems, Montreal, Canada, pp. 31–40 (2014)Google Scholar
- 23.Banirazi, R., Jonckheere, E., Krishnamachari, B.: Heat diffusion optimal dynamic routing for multiclass multihop wireless networks. In: INFOCOM, Toronto, Canada, pp. 325–333 (2014)Google Scholar
- 24.Ghosh, P., Ren, He, Banirazi, R., Krishnamachari, B., Jonckheere, E.: Empirical evaluation of the heat-diffusion collection protocol for wireless sensor networks. Comput. Netw. (COMNET) 127, 217–232 (2017)CrossRefGoogle Scholar
- 25.Banirazi, R., Jonckheere, E., Krishnamachari, B., Minimum delay in class of throughput-optimal control policies on wireless networks. In: American Control Conference (ACC), Portland, OR, pp. 2668–2675 (2014)Google Scholar
- 26.Tassiulas, L., Ephremides, A.: Stability properties of constrained queueing systems and scheduling policies for maximal throughput in multihop radio networks. IEEE Trans. Autom. Control 37(12), 1936–1948 (1992)zbMATHCrossRefGoogle Scholar
- 27.Wang, C., Chen, H., Jonckheere, E.: Quantum versus simulated annealing in wireless interference network optimization. Sci. Rep. 6, 25797 (2016)ADSCrossRefGoogle Scholar
- 28.Jonckheere, E.A., Rezakhani, A.T., Ahmad, F.: Differential topology of adiabatically controlled quantum processes. Quantum Inf. Process. 12(3), 1515–1538 (2013). Special Issue on Quantum ControlMathSciNetzbMATHADSCrossRefGoogle Scholar
- 29.Jonckheere, E.A., Ahmad, F., Gutkin, E.: Differential topology of numerical range. Linear Algebra Appl. 279(1–3), 227–254 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
- 30.Wang, C., Jonckheere, E., Brun, T.: Ollivier–Ricci curvature and fast approximation to tree-width in embeddability of QUBO problems. In: ISCCSP, Athens, Greece, pp. 639–642 (2014)Google Scholar
- 31.Wang, C., Jonckheere, E., Brun, T.: Differential geometric treewidth estimation in adiabatic quantum computation. Quantum Inf. Process. 15(10), 3951–3966 (2016)MathSciNetzbMATHADSCrossRefGoogle Scholar
- 32.Wang, C., Jonckheere, E., Banirazi, R.: Wireless network capacity versus Ollivier–Ricci curvature under heat diffusion (HD) protocol. In: American Control Conference (ACC 2014), Portland, OR, pp. 3536–3541 (2014)Google Scholar
- 33.Wang, C., Jonckheere, E., Banirazi, R.: Interference constrained network performance control based on curvature control. In: 2016 American Control Conference, Boston, USA, pp. 6036–6041 (2016)Google Scholar
- 34.Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor network. IEEE Commun. Mag. 40(8), 102–114 (2002)CrossRefGoogle Scholar
- 35.Karp, B., Kung, H.T.: GPSR: Greedy perimeter stateless routing for wireless networks. In: Proceedings ACM MobiCom’00, Boston, MA, pp. 243–254 (2000)Google Scholar
- 36.Official homepage of the IEEE 802.11 working group. http://www.ieee802.org/11. Accessed 2016
- 37.Bianchi, G.: Performance analysis of the IEEE 802.11 distributed coordination function. IEEE J. Sel. Areas Commun. 18, 535–547 (2000)CrossRefGoogle Scholar
- 38.Cali, F.: Dynamic tuning of the IEEE 802.11 protocol to achieve a theoretical throughput limit. IEEE/ACM Trans. Netw. 8, 785–799 (2000)CrossRefGoogle Scholar
- 39.Jain, K., Padhey, J., Padmanabhan, V.N., Qiu, L.: Impact of interference on multi-hop wireless network performance. In: MobiCom ’03, San Diego, California, USA, pp. 66–80 (2003)Google Scholar
- 40.Alicherry, A., Bhatia, R., Li, L.E.: Joint channel assignment and routing for throughput optimization in multiradio wireless mesh networks. IEEE J. Sel. Areas Commun. 24(11), 1960–1971 (2006)CrossRefGoogle Scholar
- 41.Kodialam, M., Nandagopal, T.: Characterizing the capacity region in multi-radio multi-channel wireless mesh networks. In: MobiCom’05, ACM, Cologne, Germany, pp. 73–87 (2005)Google Scholar
- 42.Sanghavi, S.S., Bui, L., Srikant, R.: Distributed link scheduling with constant overhead. ACM SIGMETRICS 35(1), 313–324 (2007)CrossRefGoogle Scholar
- 43.Wan, P.J.: Multiflows in multihop wireless networks. In: MobiHoc’09, New Orleans, LA, USA, pp. 85–94 (2009)Google Scholar
- 44.Blough, D.M., Resta, G., Sant, P.: Approximation algorithms for wireless link scheduling with SINR-based interference. IEEE Trans. Netw. 18(6), 1701–1712 (2010)CrossRefGoogle Scholar
- 45.Chafekar, D., Anil Kumar, V.S., Marathe, M.V., Parthasarathy, S., Srinivasan, A.: Capacity of wireless networks under SINR interference constraints. Wirel. Netw. 17, 1605–1624 (2011)CrossRefGoogle Scholar
- 46.Moscibroda, T., Wattenhofer, R., Zollinger, A.: Topology control meets SINR: the scheduling complexity of arbitrary topologies. In: MobiHoc’06, ACM, Florence, Italy, pp. 310–321 (2006)Google Scholar
- 47.Gupta, P., Kumar, P.R.: The capacity of wireless networks. IEEE Trans. Inf. Theory 46(2), 388–404 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
- 48.Andrews, M., Dinitz, M.: Maximizing capacity in arbitrary wireless networks in the SINR model: complexity and game theory. In: INFOCOM’09, Rio de Janeiro, pp. 1332–1340 (2009)Google Scholar
- 49.Sharma, G., Mazumdar, R., Shroff, N.: On the complexity of scheduling in wireless networks. In: MobiCom’06, Proceedings of the 12th Annual International Conference on Mobile Computing and Networking, Los Angeles, CA, pp. 227–238 (2006)Google Scholar
- 50.Edmonds, J.: Paths, trees, and flowers. Can. J. Math. 17, 449–467 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
- 51.Dimakis, A., Walrand, J.: Sufficient conditions for stability of longest-queue-first scheduling: second-order properties using fluid limits. Adv. Appl. Probab. 38(2), 505–521 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
- 52.Joo, C., Lin, X., Shroff, N.: Understanding the capacity region of the greedy maximal scheduling algorithm in multi-hop wireless networks. IEEE/ACM Trans. Netw. 17(4), 1132–1145 (2009)CrossRefGoogle Scholar
- 53.Zussman, G., Brzezinski, A., Modiano, E.: Multihop local pooling for distributed throughput maximization in wireless networks. In: INFOCOM’08, Phoenix, Arizona (2008)Google Scholar
- 54.Leconte, M., Ni, J., Srikant, R.: Improved bounds on the throughput efficiency of greedy maximal scheduling in wireless networks. In: MOBIHOC’09, pp. 165–174 (2009)Google Scholar
- 55.Li, B., Boyaci, C., Xia, Y.: A refined performance characterization of longest-queue-first policy in wireless networks. In: ACM MOBIHOC, New York, NY, USA, pp. 65–74 (2009)Google Scholar
- 56.Brzezinski, A., Zussman, G., Modiano, E.: Distributed throughput maximization in wireless mesh networks via pre-partitioning. IEEE/ACM Trans. Netw. 16(6), 1406–1419 (2008)CrossRefGoogle Scholar
- 57.Proutiere, A., Yi Y., Chiang, M.: Throughput of random access without message passing. In: 42nd Annual Conference on Information Sciences and Systems, Princeton, NJ, USA, pp. 509–514 (2008)Google Scholar
- 58.Jonckheere, E., Lou, M., Bonahon, F., Baryshnikov, Y.: Euclidean versus hyperbolic congestion in idealized versus experimental networks. Internet Math. 7(1), 1–27 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
- 59.Homer, S., Peinado, M.: Experiments with polynomial-time clique approximation algorithms on very large graphs. Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, volume 26 of DIMACS Series. American Mathematical Society, Providence, RI (1996)Google Scholar
- 60.Xu, X., Ma, J., An, H.W.: Improved simulated annealing algorithm for the maximum independent set problem. Intelligent Computing, Volume 4113 of the series Lecture Notes in Computer Science, pp. 822–831 (2006)Google Scholar
- 61.Kim, Y.G., Lee, M.G.: Scheduling multi-channel and multi-timeslot in time constrained wireless sensor networks via simulated annealing and particle swarm optimization. IEEE Commun. Mag. 52(1), 122–129 (2014)CrossRefGoogle Scholar
- 62.Mappar, M., Rahmani, A.M., Ashtari, A.H.: A new approach for sensor scheduling in wireless sensor networks using simulated annealing. In: ICCIT ’09. Fourth International Conference on Computer Sciences and Convergence Information Technology, Seoul, Korea, pp. 746–750 (2009)Google Scholar
- 63.Grossman, T.: Applying the INN model to the max clique problem. Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, volume 26 of DIMACS Series. American Mathematical Society, Providence, RI (1996)Google Scholar
- 64.Jagota, A.: Approximating maximum clique with a Hopfield network. IEEE Trans. Neural Netw. 6, 724–735 (1995)CrossRefGoogle Scholar
- 65.Jagota, A., Sanchis, L., Ganesan, R.: Approximately solving maximum clique using neural networks and related heuristics. Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, volume 26 of DIMACS Series. American Mathematical Society, Providence, RI (1996)Google Scholar
- 66.Bui, T.N., Eppley, P.H.: A hybrid genetic algorithm for the maximum clique problem. In: Proceedings of the 6th International Conference on Genetic Algorithms, Pittsburgh, PA, pp. 478–484 (1995)Google Scholar
- 67.Hifi, M.: A genetic algorithm-based heuristic for solving the weighted maximum independent set and some equivalent problems. J. Oper. Res. Soc. 48, 612–622 (1997)zbMATHCrossRefGoogle Scholar
- 68.Marchiori, E.: Genetic, iterated and multistart local search for the maximum clique problem. Applications of Evolutionary Computing. volume 2279 of Lecture Notes in Computer Science, pp. 112–121. Springer, Berlin (2002)Google Scholar
- 69.Feo, T.A., Resende, M.: A greedy randomized adaptive search procedure for maximum independent set. Oper. Res. 42, 860–878 (1994)zbMATHCrossRefGoogle Scholar
- 70.Battiti, R., Protasi, M.: Reactive local search for the maximum clique problem. Algorithmica 29, 610–637 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
- 71.Friden, C., Hertz, A., de Werra, D.: Stabulus: a technique for finding stable sets in large graphs with tabu search. Computing 42, 35–44 (1989)zbMATHCrossRefGoogle Scholar
- 72.Mannino, C., Stefanutti, E.: An augmentation algorithm for the maximum weighted stable set problem. Comput. Optim. Appl. 14, 367–381 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
- 73.Soriano, P., Gendreau, M.: Tabu search algorithms for the maximum clique problem. Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, volume 26 of DIMACS Series. American Mathematical Society, Providence, RI (1996)Google Scholar
- 74.Reichardt, B.W.: The quantum adiabatic optimization algorithm and local minima. In: STOC ’04, Proceedings of the Thirty-Sixth Annual ACM Symposium on Theory of Computing, Chicago, IL, pp. 502–510 (2004)Google Scholar
- 75.Felzenszwalb, P.F.: Dynamic programming and graph algorithms in computer vision. IEEE Trans. Pattern Anal. Mach. Intell. 33(4), 721–740 (2011)CrossRefGoogle Scholar
- 76.Trummer, I., Koch, C.: Multiple query optimization on the D-Wave 2X adiabatic quantum computer. Proc. VLDB Endow. 9(9), 648–659 (2016)CrossRefGoogle Scholar
- 77.O’Gorman, B., Babbush, R., Perdomo-Ortiz, A., Aspuru-Guzik, A., Smelyanskiy, V.: Bayesian network structure learning using quantum annealing. Eur. Phys. J. Spec. Top. 224(1), 163–188 (2015)CrossRefGoogle Scholar
- 78.Rieffel, E.G., Venturelli, D., O’Gorman, B., Do, M.B., Prystay, E., Smelyanskiy, V.N.: A case study in programming a quantum annealer for hard operational planning problems. Quantum Inf. Process. 14(1), 1–36 (2015)zbMATHADSCrossRefGoogle Scholar
- 79.Perdomo-Ortiz, A., Fluegemann, J., Narasimhan, S., Biswas, R., Smelyanskiy, V.N.: A quantum annealing approach for fault detection and diagnosis of graph-based systems. Eur. Phys. J. Spec. Top. 224(1), 131–148 (2015)CrossRefGoogle Scholar
- 80.Zick, K.M., Shehab, O., French, M.: Experimental quantum annealing: case study involving the graph isomorphism problem. Sci. Rep. 5, 1168 (2015). https://doi.org/10.1038/srep11168 CrossRefGoogle Scholar
- 81.Benedetti, M., Realpe-Gmez, J., Biswas, R., Perdomo-Ortiz, A.: Estimation of effective temperatures in a quantum annealer and its impact in sampling applications: a case study towards deep learning applications. Phys. Rev. A 94(2), 022308 (2016)ADSCrossRefGoogle Scholar
- 82.Choi, V.: Minor-embedding in adiabatic quantum computation: I. The parameter setting problem. Quantum Inf. Process. 7, 193–209 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
- 83.Bian, Z., Chudak, F., Macready, W.G., Clark, L., Gaitan, F.: Experimental determination of Ramsey numbers. Phys. Rev. Lett. 111, 130505 (2013)ADSCrossRefGoogle Scholar
- 84.Choi, V.: Minor-embedding in adiabatic quantum computation: II. Minor-universal graph design. Quantum Inf. Process. 10(3), 343–353 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
- 85.Vinci, W., et al.: Quantum annealing correction with minor embedding. Phys. Rev. A 92, 042310 (2015)ADSCrossRefGoogle Scholar
- 86.Vinci, W., Albash, T., Lidar, D.A.: Nested quantum annealing correction. npj Quantum Inf. 2, 16017 (2016)ADSCrossRefGoogle Scholar
- 87.Mishra, A., Albash, T., Lidar, D.A.: Performance of two different quantum annealing correction codes. Quantum Inf. Process. 15(2), 609–636 (2016)MathSciNetzbMATHADSCrossRefGoogle Scholar
- 88.Isakov, S.V., Zintchenko, I.N., Rnnow, T.F., Troyer, M.: Optimized simulated annealing for Ising spin glasses. Comput. Phys. Commun. 192, 265–271 (2015)MathSciNetzbMATHADSCrossRefGoogle Scholar
- 89.Ollivier, Y.: Ricci curvature on Markov chains on metric spaces. J. Funct. Anal. 256(3), 810–864 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
- 90.Bauer, F., Jost, J., Liu, S.: Ollivier–Ricci curvature and the spectrum of the normalized graph Laplace operator. Math. Res. Lett. 19(6), 1185–1205 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
Copyright information
© Springer Science+Business Media, LLC, part of Springer Nature 2018