High-efficiency quantum digital signature scheme for signing long messages

  • Hao Zhang
  • Xue-Bi An
  • Chun-Hui Zhang
  • Chun-Mei Zhang
  • Qin WangEmail author


Quantum digital signature (QDS) is based on the laws of quantum physics, and can provide unconditional security for signing messages between remote multi-party users. To date, different QDS protocols have been proposed and corresponding security analysis has been done. Just most security analyses are directed against signing single-bit messages, and the security cannot be ensured when signing multi-bit messages if one simply puts blocks together. Recently, T.Y. Wang et al. analyzed the security under this situation and gave a solution for eliminating potential eavesdropping attacks. However, its efficiency is relatively low since they need to consume more than 2n-bit signatures to sign a classical n-bit message. In this paper, we propose a high efficient approach for signing multi-bit messages. As a result, the efficiency can be improved with 36.92% when signing a 128-bit message compared with using T.Y. Wang et al.’s method. And the improvement is even larger when signing longer messages.


Quantum digital signature Multi-bit messages High efficiency 



The authors thank Xing-Yu Zhou, Kang Liu, Jia-Ming Chen and Jian-Rong Zhu for enlightened discussions.


We gratefully acknowledge the financial support from the National Key R&D Program of China through Grant Nos. 2018YFA0306400, 2017YFA0304100, the National Natural Science Foundation of China through Grants Nos. 61475197, 61590932, 11774180, 61705110, the Natural Science Foundation of the Jiangsu Higher Education Institutions through Grant No. 17KJB140016, the Natural Science Foundation of Jiangsu Province through Grant No. BK20170902, the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the Postgraduate Research and Practice Innovation Program of Jiangsu Province through Grant No. 46002CX17792.


  1. 1.
    Gottesman, D., Chuang, I.: Quantum digital signatures. arXiv:quant-ph/0105032 (2001)
  2. 2.
    Dunjko, V., Wallden, P., Andersson, E.: Quantum digital signatures without quantum memory. Phys. Rev. Lett. 112(4), 040502 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    Wallden, P., Dunjko, V., Kent, A., Andersson, E.: Quantum digital signatures with quantum-key-distribution components. Phys. Rev. A 91(4), 042304 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    Yin, H.L., Fu, Y., Chen, Z.B.: Practical quantum digital signature. Phys. Rev. A 93(3), 032316 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    Amiri, R., Wallden, P., Kent, A., Andersson, E.: Secure quantum signatures using insecure quantum channels. Phys. Rev. A 93(3), 032325 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    Puthoor, I.V., Amiri, R., Wallden, P., Curty, M., Andersson, E.: Measurement-device-independent quantum digital signatures. Phys. Rev. A 94(2), 022328 (2016)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Arrazola, J.M., Wallden, P., Andersson, E.: Multiparty quantum signature schemes. Quantum Inf. Comput. 6(0435), 435–464 (2016)MathSciNetGoogle Scholar
  8. 8.
    Collins, R.J., Donaldson, R.J., Dunjko, V., Wallden, P., et al.: Realization of quantum digital signatures without the requirement of quantum memory. Phys. Rev. Lett. 113(4), 040502 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    Donaldson, R.J., Collins, R.J., Kleczkowska, K., et al.: Experimental demonstration of kilometer-range quantum digital signatures. Phys. Rev. A 93(1), 012329 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    Collins, R.J., Amiri, R., Fujiwara, M., et al.: Experimental transmission of quantum digital signatures over 90 km of installed optical fiber using a differential phase shift quantum key distribution system. Opt. Lett. 41(21), 4883–4886 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    Yin, H.L., Fu, Y., Liu, H., et al.: Experimental quantum digital signature over 102 km. Phys. Rev. A 95(3), 032334 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    Yin, H.L., Wang, W.L., Tang, Y.L., et al.: Experimental measurement-device-independent quantum digital signatures over a metropolitan network. Phys. Rev. A 95(4), 042338 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    Roberts, G.L., Lucamarini, M., Yuan, Z.L., et al.: Experimental measurement-device-independent quantum digital signatures. Nat. Commun. 8(1), 1098 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    Collins, R.J., Amiri, R., Fujiwara, M., et al.: Experimental demonstration of quantum digital signatures over 43 dB channel loss using differential phase shift quantum key distribution. Sci. Rep. 7(1), 3235 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    Wang, C., Song, X.T., Yin, Z.Q., et al.: Phase-reference-free experiment of measurement-device-independent quantum key distribution. Phys. Rev. Lett. 115(16), 160502 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    Yin, H.L., Chen, T.Y., Yu, Z.W., et al.: Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett. 117(19), 190501 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    Wang, C., Yin, Z.Q., Wang, S., Chen, W., Guo, G.C., Han, ZFu: Measurement-device-independent quantum key distribution robust against environmental disturbances. Optica 4(9), 1016–1023 (2017)CrossRefGoogle Scholar
  18. 18.
    Zhang, C.H., Zhou, X.Y., Ding, H.J., Zhang, C.M., Guo, G.C., Wang, Q.: Proof-of-principle demonstration of passive decoy-state quantum digital signatures over 200 km. Phys. Rev. Appl. 10, 034033 (2018).
  19. 19.
    Wang, Q., Chen, W., Xavier, G., et al.: Experimental decoy-state quantum key distribution with a sub-poissionian heralded single-photon source. Phys. Rev. Lett. 110(9), 090501 (2008)CrossRefGoogle Scholar
  20. 20.
    Wang, Q., Wang, X.B.: Simulating of the measurement-device independent quantum key distribution with phase randomized general sources. Sci. Rep. 4(4), 4612 (2014)ADSGoogle Scholar
  21. 21.
    Wang, T.Y., Cai, X.Q., Ren, Y.L., Zhang, R.L.: Security of quantum digital signatures for classical messages. Sci. Rep. 5, 9231 (2015)CrossRefGoogle Scholar
  22. 22.
    Wang, T.Y., Ma, J.F., Cai, X.Q.: The postprocessing of quantum digital signatures. Quantum Inf. Process. 16(1), 19 (2017)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Hao Zhang
    • 1
    • 2
    • 3
  • Xue-Bi An
    • 4
    • 5
  • Chun-Hui Zhang
    • 1
    • 2
    • 3
  • Chun-Mei Zhang
    • 1
    • 2
    • 3
    • 4
  • Qin Wang
    • 1
    • 2
    • 3
    • 4
    Email author
  1. 1.Institute of Quantum Information and TechnologyNanjing University of Posts and TelecommunicationsNanjingChina
  2. 2.Broadband Wireless Communication and Sensor Network TechnologyKey Lab of Ministry of Education, NUPTNanjingChina
  3. 3.Telecommunication and Networks, National Engineering Research Center, NUPTNanjingChina
  4. 4.Key Laboratory of Quantum Information, CASUniversity of Science and Technology of ChinaHefeiChina
  5. 5.State Key Laboratory of CryptologyBeijingChina

Personalised recommendations