Advertisement

Two-time correlation functions of a two-level system influenced by a composite environment

  • Masashi Ban
Article
  • 12 Downloads

Abstract

To study the quantum regression theorem and the Leggett–Garg inequality, two-time correlation functions are calculated for a two-level system which is placed under the influence of a composite environment consisting of two subsystems. Two different configurations, I and II, are considered. In the configuration I, a two-level system of interest interacts with a thermal reservoir via another two-level system. In the configuration II, a relevant two-level system is influenced independently by another two-level system and a thermal reservoir. In both configurations, the thermal reservoir is assumed to have a sufficiently short correlation time. When an interacting nuclear-spin and electron-spin system is considered, the relevant system is a nuclear-spin (electron-spin) in the configuration I (II). It is shown that the quantum regression theorem for the relevant two-level system is always valid in the configuration II while it is not in the configuration I, regardless of whether the reduced time evolution is Markovian or not. Furthermore, it is found that the Leggett–Garg inequality can be violated in both configurations. The dependence of the violation on the parameters characterizing the open two-level system is investigated.

Keywords

Two-time correlation function Composite environment Quantum regression theorem The Leggett–Garg inequality 

References

  1. 1.
    Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2006)zbMATHGoogle Scholar
  2. 2.
    Alicki, R., Lendi, K.: Quantum Dynamical Semigroups and Applications. Springer, Berlin (2007)zbMATHGoogle Scholar
  3. 3.
    Rivas, A., Huelga, S.F.: Open Quantum Systems. Springer, Berlin (2012)CrossRefGoogle Scholar
  4. 4.
    Uchiyama, C., Aihara, M., Saeki, M., Miyashita, S.: Master equation approach to line shape in dissipative systems. Phys. Rev. E 80, 021128 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    Saeki, M., Uchiyama, C., Mori, T., Miyashita, S.: Comparison among various expressions of complex admittance for quantum systems in contact with a heat reservoir. Phys. Rev. E 81, 031131 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    Ban, M., Kitajima, S., Arimitsu, T., Shibata, F.: Linear response theory for open systems: quantum master equation approach. Phys. Rev. A 95, 022126 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    Wiseman, H.M.: Weak values, quantum trajectories, and the cavity-QED experiment on wave-particle correlation. Phys. Rev. 65, 032111 (2002)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Ban, M.: Weak measurement on a quantum system in contact with a thermal reservoir: projection operator method. Quantum Stud. 4, 339 (2017)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Barnett, S.M., Radmore, P.M.: Methods in Quantum Optics. Oxford University Press, Oxford (1997)zbMATHGoogle Scholar
  10. 10.
    Ali, M., Zhang, W.: Nonequilibrium transient dynamics of photon statistics. Phys. Rev. A 95, 033830 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    Kubo, R., Toda, M., Hashitsume, N.: Statistical Physics II. Springer, Berlin (1985)CrossRefGoogle Scholar
  12. 12.
    Breuer, H.P., Laine, E., Piilo, J.: Measure for the degree of non-Markovian behavior of quantum processes in open systems. Phys. Rev. Lett. 103, 210401 (2009)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Laine, E., Piilo, J., Breuer, H.P.: Measure for the non-Markovianity of quantum processes. Phys. Rev. A 81, 062115 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    Rivas, A., Huelga, S.F., Plenio, M.B.: Quantum non-Markovianity: characterization, quantification and detection. Rep. Progress. Phys. 77, 094001 (2014)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Breuer, H.P., Laine, E., Piilo, J., Vacchini, B.: Non-Markovian dynamics in open quantum systems. Rev. Mod. Phys. 88, 021002 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-Markovian quantum dynamics. Phys. Rev. Lett. 101, 150402 (2008)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Wolf, M.M., Cirac, J.I.: Dividing quantum channels. Commun. Math. Phys. 279, 147 (2008)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Vega, I., Alonso, D.: Non-Markovian reduced propagator, multiple-time correlation functions, and master equations with general initial conditions in the weak-coupling limit. Phys. Rev. A 73, 022102 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    Goan, H., Jian, C., Chen, P.: Non-Markovian finite-temperature two-time correlation functions of system operators of a pure-dephasing model. Phys. Rev. A 82, 012111 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    Goan, H., Chen, P., Jian, C.: Non-Markovian finite-temperature two-time correlation functions of system operators: beyond the quantum regression theorem. J. Chem. Phys. 134, 124112 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    Leggett, A.J., Garg, A.: Quantum mechanics versus macroscopic realism. Phys. Rev. Lett. 54, 857 (1985)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Emary, C., Lambert, N., Nori, F.: Leggett–Garg inequalities. Rep. Progress. Phys. 77, 016001 (2014)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Ivanov, A., Breuer, H.P.: Extension of the Nakajima-Zwanzig approach to multitime correlation functions of open systems. Phys. Rev. A 92, 032113 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    McCutcheon, D.P.S.: Optical signatures of non-Markovian behavior in open quantum systems. Phys. Rev. A 93, 022119 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    Ban, M.: Double-time correlation functions of two quantum operations in open systems. Phys. Rev. A 96, 042111 (2017); Erratum: Phys. Rev. A 97, 069901 (2018)Google Scholar
  26. 26.
    Ban, M., Kitajima, S., Shibata, F.: Two-time correlation function of an open quantum system in contact with a Gaussian reservoir. Phys. Rev. A 97, 052101 (2018)ADSCrossRefGoogle Scholar
  27. 27.
    Guarnieri, G., Smirne, A., Vacchini, B.: Quantum regression theorem and non-Markovianity of quantum dynamics. Phys. Rev. A 90, 022110 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    Ali, M., Lo, P., Tu, M.W., Zhang, W.: Non-Markovianity measure using two-time correlation functions. Phys. Rev. A 92, 062306 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    Arimitsu, T., Ban, M., Shibata, : A solvable model of microscopic frequency modulation I: conventional treatment of the damping operator. Physica 123A, 131 (1984)ADSCrossRefGoogle Scholar
  30. 30.
    Apollaro, T.J.G., Lorenzo, S., Franco, C., Plastina, F., Paternostro, M.: Competition between memory-keeping and memory-erasing decoherence channels. Phys. Rev. A 90, 012310 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    Cammack, H.M., Kirton, P., Stace, T.M., Eastham, P.R., Keeling, J., Lovett, B.W.: Coherence protection in coupled quantum systems. Phys. Rev. A 97, 022103 (2018)ADSCrossRefGoogle Scholar
  32. 32.
    Arimitsu, T., Shibata, F.: Theory of exchange dephasing I: general formulation. J. Phys. Soc. Jpn. 51, 1070 (1982)ADSCrossRefGoogle Scholar
  33. 33.
    Bloch, F.: Nuclear induction. Phys. Rev. 70, 460 (1946)ADSCrossRefGoogle Scholar
  34. 34.
    Bloch, F.: Dynamical theory of nuclear induction II. Phys. Rev. 102, 104 (1956)ADSCrossRefGoogle Scholar
  35. 35.
    King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Trans. Inf. Theory 47, 192 (2001)MathSciNetCrossRefGoogle Scholar
  36. 36.
    ban, M., Arimitsu, T.: A solvable model of microscopic frequency modulation II. Physica 129A, 455 (1985)ADSCrossRefGoogle Scholar
  37. 37.
    Ban, M., Kitajima, S., Shibata, F.: Decoherence of entanglement in the Bloch channel. J. Phys. A 38, 4235 (2005)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  39. 39.
    Fiedenberger, A., Lutz, E.: Assessing the quantumness of a damped two-level system. Phys. Rev. A 95, 022101 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Graduate School of Humanities and SciencesOchanomizu UniversityTokyoJapan

Personalised recommendations