Quantum Information Processing

, 17:248 | Cite as

Can quantum discord increase in a quantum communication task?

  • Shubhayan SarkarEmail author
  • Chandan Datta


Quantum teleportation of an unknown quantum state is one of the few communication tasks which has no classical counterpart. Usually the aim of teleportation is to send an unknown quantum state to a receiver. But is it possible in some way that the receiver’s state has more quantum discord than the sender’s state? We look at a scenario where Alice and Bob share a pure quantum state and Alice has an unknown quantum state. She performs joint measurement on her qubits and channel to prepare Bob’s qubits in a mixed state which has higher quantum discord than hers. We also observe an interesting feature in this scenario, when the quantum discord of Alice’s qubits increases, then the quantum discord of Bob’s prepared qubits decreases. Furthermore, we show that the fidelity of one-qubit quantum teleportation using Bob’s prepared qubits as the channel is higher than using Alice’s qubits.


Quantum communication Quantum teleportation Quantum discord Werner state Teleportation fidelity 



We would like to thank Satyabrata Adhikari and Prasanta Kumar Panigrahi for useful discussions.


  1. 1.
    Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Dakić, B.: Quantum discord as resource for remote state preparation. Nat. Phys. 8, 666–670 (2012)CrossRefGoogle Scholar
  3. 3.
    Horodecki, P., Tuziemski, J., Mazurek, P., Horodecki, R.: Can communication power of separable correlations exceed that of entanglement resource? Phys. Rev. Lett. 112, 140507 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    Micuda, Michal, Starek, Robert, Marek, Petr, Mikova, Martina, Straka, Ivo, Jezek, Miroslav, Tashima, Toshiyuki, Ozdemir, Sahin K., Tame, Mark: Experimental characterization of a non-local convertor for quantum photonic networks. Opt. Express 25, 7839–7848 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    Tashima, T., Tame, M.S., Ozdemir, S.K., Nori, F., Koashi, M., Weinfurter, H.: Photonic multipartite entanglement conversion using nonlocal operations. Phys. Rev. A 94, 052309 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    Oppenheim, J., Horodecki, M., Horodecki, P., Horodecki, R.: Thermodynamical approach to quantifying quantum correlations. Phys. Rev. Lett. 89, 180402 (2002)ADSCrossRefzbMATHGoogle Scholar
  7. 7.
    Ferraro, A., Paris, M.G.A.: Nonclassicality criteria from phase-space representations and information-theoretical constraints are maximally inequivalent. Phys. Rev. Lett. 108, 206403 (2012)CrossRefGoogle Scholar
  8. 8.
    Agudelo, E., Sperling, J., Vogelr, W.: Quasiprobabilities for multipartite quantum correlations of light. Phys. Rev. A 87, 033811 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    Gheorghiu, Vlad, de Oliveira, Marcos C., Sanders, Barry C.: Nonzero classical discord. Phys. Rev. Lett. 115, 030403 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)ADSCrossRefzbMATHGoogle Scholar
  11. 11.
    Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A Math. Gen. 34, 6899 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett 100, 050502 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    Adesso, G., Bromley, T.R., Cianciaruso, M.: Measures and applications of quantum correlations. J. Phys. A Math. Theor. 49, 473001 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Streltsov, A.: Quantum Correlations Beyond Entanglement and Their Role in Quantum Information Theory, pp. 2191–5423. Springer, Berlin (2015)zbMATHGoogle Scholar
  15. 15.
    Girolami, D., Adesso, G.: Quantum discord for general two-qubit states: analytical progress. Phys. Rev. A 83, 052108 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    Ozdemir, S.K., Bartkiewicz, K., Liu, Y-x, Miranowicz, A.: Teleportation of qubit states through dissipative channels: conditions for surpassing the no-cloning limit. Phys. Rev. A 76, 042325 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    Bartkiewicz, K., Miranowicz, A., Ozdemir, S.K.: Optimal mirror phase-covariant cloning. Phys. Rev. A 80, 032306 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    Julia-Díaz, B., Burdis, J.M., Tabakin, F.: QDENSITY-A mathematica quantum computer simulation. Comp. Phys. Commun. 180, 474 (2009)ADSCrossRefzbMATHGoogle Scholar
  19. 19.
    Verstraete, F., Verschelde, H.: Optimal teleportation with a mixed state of two qubits. Phys. Rev. Lett. 90, 097901 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)ADSCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Physical SciencesNational Institute of Science Education and Research, HBNIJatniIndia
  2. 2.Institute of PhysicsBhubaneswarIndia
  3. 3.Homi Bhabha National InstituteMumbaiIndia

Personalised recommendations