Advertisement

Quantum Information Processing

, 17:246 | Cite as

Tunable multi-party high-capacity quantum key distribution based on m-generalized Fibonacci sequences using golden coding

  • Hong Lai
  • Mingxing Luo
  • Mehmet A. Orgun
  • Josef Pieprzyk
  • Fuyuan Xiao
  • Cheng Zhan
Article
  • 29 Downloads

Abstract

Practical communication settings for quantum key distribution (QKD) are very complex, and the number of participants should be tunable. Given these, we propose a tunable multi-party high-capacity QKD protocol based on m-generalized Fibonacci sequences and golden coding, where the number of participants can be adjusted adaptively by joining a new participant and revoking an old participant, combining two participant groups into one group. Meanwhile, we construct golden coding to achieve higher capability and fewer interactive communications.

Keywords

Multi-party quantum key distribution m-Generalized Fibonacci coding Tunable Golden coding 

Notes

Acknowledgements

Hong Lai was supported by the National Natural Science Foundation of China (No. 61702427) and the Doctoral Program of Higher Education (No. SWU115091), the Fundamental Research Funds for the Central Universities (XDJK2018C048), and the financial support in part by the 1000-Plan of Chongqing by Southwest University (No. SWU116007). Mingxing Luo was supported by the National Natural Science Foundation of China (No. 61772437) and Sichuan Youth Science and Technique Foundation (No. 2017JQ0048). Josef Pieprzyk was supported by National Science Centre, Poland, Project Registration No. UMO-2014/15/B/ST6/05130. Cheng Zhan was supported by the National Natural Science Foundation of China (No. 61702426).

References

  1. 1.
    Goldenberg, L., Vaidman, L.: Counterfactual quantum key distribution without polarization encoding. Phys. Rev. Lett. 75, 1239–41 (1995)ADSMathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)ADSMathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key distribution scheme. Phys. Rev. A. 65, 032302–032305 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    Panduranga Rao, M.V., Jakobi, M.: Towards communication-efficient quantum oblivious key distribution. Phys. Rev. A. 87, 012331 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A. 78, 022321 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    Tanaka, A., Maeda, W., Takahashi, S., Tajima, A., Tomita, A.: Ensuring quality of shared keys through quantum key distribution for practical application. IEEE J. Sel. Top. Quantum Electron. 15, 1622–1629 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (Bangalore, India) (New York: IEEE), pp. 175–179 (1984)Google Scholar
  8. 8.
    Simon, D.S., Lawrence, N., Trevino, J., DalNegro, L., Sergienko, A.V.: High-capacity quantum Fibonacci coding for key distribution. Phys. Rev. A. 87, 032312 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    Barreiro, J.T., Kwiat, P.G.: Hyperentanglement for advanced quantum communication. In: Proceedings- SPIE The International Society For Optical Engineering; 7092P (2008); 6th Quantum Communications and Quantum Imaging ConferenceGoogle Scholar
  10. 10.
    Mafu, M., Dudley, A., Goyal, S., Giovannini, D., McLaren, M., Padgett, M.J.: Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases. Phys. Rev. A 88, 032305 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    Boyd, R.W., et al.: Quantum key distribution in a high-dimensional state space: exploiting the transverse degree of freedom of the photon. In: Proceedings of SPIE 7948, Advances in Photonics of Quantum Computing, Memory, and Communication IV, 79480L (February 11, 2011). https://doi.org/10.1117/12.873491.
  12. 12.
    Lai, H., Luo, M.X., Zhan, C., Pieprzyk, J., Orgun, M.A.: An improved coding method of quantum key distribution protocols based on Fibonacci-valued OAM entangled states. Phys. Lett. A. 381, 2922–2926 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    Simon, D.S., Sergienko, A.V.: High capacity quantum key distribution via hyperentangled degrees of freedom. New J. Phys. 16(6), 063052 (2013)CrossRefGoogle Scholar
  14. 14.
    Yu, N.: Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    Dal Negro, L., Lawrence, N., Trevino, J.: Analytical light scattering and orbital angular momentum spectra of arbitrary Vogel spirals. Opt. Express 20(16), 18209–18223 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    Simon, D.S., Fitzpatrick, C.A., Sergienko, A.V.: Security in the multi-dimensional Fibonacci protocol. arXiv:1503.04448 (2015)
  17. 17.
    Fraenkel, A.S., Klein, S.T.: Robust universal complete codes for transmission and compression. Discrete Appl. Math. 64, 31–55 (1996)CrossRefMATHGoogle Scholar
  18. 18.
    Lai, H., Zhang, J., Luo, M.X., Pan, L., Pieprzyk, J., Xiao, F.Y., Orgun, M.A.: Hybrid threshold adaptable quantum secret sharing scheme with reverse Huffman-Fibonacci-tree coding. Sci. Rep. 6, 31350 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Hong Lai
    • 1
  • Mingxing Luo
    • 2
  • Mehmet A. Orgun
    • 3
  • Josef Pieprzyk
    • 4
  • Fuyuan Xiao
    • 1
  • Cheng Zhan
    • 1
  1. 1.School of Computer and Information ScienceSouthwest UniversityChongqingChina
  2. 2.Information Security and National Computing Grid Laboratory, School of Information Science and TechnologySouthwest Jiaotong UniversityChengduChina
  3. 3.Department of ComputingMacquarie UniversitySydneyAustralia
  4. 4.Data61, CSIROSydneyAustralia

Personalised recommendations