Advertisement

Quantum Information Processing

, 17:245 | Cite as

On acyclic anyon models

  • César Galindo
  • Eric Rowell
  • Zhenghan Wang
Article

Abstract

Acyclic anyon models are non-abelian anyon models for which thermal anyon errors can be corrected. In this note, we characterize acyclic anyon models and raise the question whether the restriction to acyclic anyon models is a deficiency of the current protocol or could it be intrinsically related to the computational power of non-abelian anyons. We also obtain general results on acyclic anyon models and find new acyclic anyon models such as \(SO(8)_2\) and the representation theory of Drinfeld doubles of nilpotent finite groups.

Keywords

Nilpotent modular category Braiding Anyon Error correction 

Mathematics Subject Classification

16W30 18D10 19D23 

References

  1. 1.
    Barkeshli, M., Bonderson, P., Cheng, M., Wang, Z.: Symmetry, defects, and gauging of topological phases. ArXiv e-prints (2014)Google Scholar
  2. 2.
    Bruillard, P., Gustafson, P., Plavnik, J.Y., Rowell, E.C.: Categorical dimension as a quantum statistic and applications. arXiv preprint arXiv:1710.10284 (2017)
  3. 3.
    Bakalov, B., Kirillov, A., Jr.: Lectures on Tensor Categories and Modular Functors, Volume 21 of University Lecture Series. American Mathematical Society, Providence, RI (2001)Google Scholar
  4. 4.
    Bruguières, A., Natale, S.: Exact sequences of tensor categories. Int. Math. Res. Not. IMRN 24, 5644–5705 (2011)MathSciNetMATHGoogle Scholar
  5. 5.
    Cui, S.X., Galindo, C., Plavnik, J.Y., Wang, Z.: On gauging symmetry of modular categories. Commun. Math. Phys. 348(3), 1043–1064 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Cui, S.X., Wang, Z.: Universal quantum computation with metaplectic anyons. J. Math. Phys. 56(3), 032202, 18 (2015)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Drinfeld, V., Gelaki, S., Nikshych, D., Ostrik, V.: Group-theoretical properties of nilpotent modular categories. arXiv preprint arXiv:0704.0195 (2007)
  8. 8.
    Dauphinais, G., Poulin, D.: Fault-tolerant quantum error correction for non-abelian anyons. Commun. Math. Phys. 355(2), 519–560 (2017)ADSMathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Etingof, P., Gelaki, S., Nikshych, D., Ostrik, V.: Tensor Categories. Mathematical Surveys and Monographs, vol. 205. American Mathematical Society, Providence, RI (2015)Google Scholar
  10. 10.
    Etingof, P., Nikshych, D., Ostrik, V.: Weakly group-theoretical and solvable fusion categories. Adv. Math. 226(1), 176–205 (2011)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Etingof, P., Rowell, E., Witherspoon, S.: Braid group representations from twisted quantum doubles of finite groups. Pac. J. Math. 234(1), 33–41 (2008)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Freedman, M.H., Larsen, M., Wang, Z.: A modular functor which is universal for quantum computation. Commun. Math. Phys. 227(3), 605–622 (2002)ADSMathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Gelaki, S., Nikshych, D.: Nilpotent fusion categories. Adv. Math. 217(3), 1053–1071 (2008)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Kassel, C.: Quantum Groups. Graduate Texts in Mathematics, vol. 155. Springer, New York (1995)Google Scholar
  15. 15.
    Kirillov Jr, A.: Modular categories and orbifold models. Commun. Math. Phys. 229(2), 309–335 (2002)ADSMathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Naidu, D., Rowell, E.C.: A finiteness property for braided fusion categories. Algebras Represent. Theory 14(5), 837–855 (2011)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Rowell, E.C., Wang, Z.: Mathematics of topological quantum computing. Bull. Am. Math. Soc. (N.S.) 55(2), 183–238 (2018)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de MatemáticasUniversidad de los AndesBogotáColombia
  2. 2.Department of MathematicsTexas A&M UniversityCollege StationUSA
  3. 3.Microsoft Research Station Q and Department of MathematicsUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations