Advertisement

Quantum Information Processing

, 17:241 | Cite as

Some limit laws for quantum walks with applications to a version of the Parrondo paradox

  • Takuya Machida
  • F. Alberto Grünbaum
Article
  • 30 Downloads

Abstract

A quantum walker moves on the integers with four extra degrees of freedom, performing a coin-shift operation to alter its internal state and position at discrete units of time. The time evolution is described by a unitary process. We focus on finding the limit probability law for the position of the walker and study it by means of Fourier analysis. The quantum walker exhibits both localization and a ballistic behavior. Our two results are given as limit theorems for a 2-period time-dependent walk, and they describe the location of the walker after it has repeated the unitary process a large number of times. The theorems give an analytical tool to study some of the Parrondo-type behavior in a quantum game which was studied by Rajendran and Benjamin (R Soc Open Sci 5:171599, 2018) by means of very nice numerical simulations. With our analytical tools at hand we can easily explore the “phase space” of parameters of one of the games, similar to the winning game in their papers. We include numerical evidence that our two games, similar to theirs, exhibit a Parrondo-type paradox.

Keywords

Quantum walk Limit theorem Parrondo paradox 

Notes

Acknowledgements

Takuya Machida is supported by JSPS Grant-in-Aid for Young Scientists (B) (No.16K17648).

References

  1. 1.
    Rajendran, J., Benjamin, C.: Implementing Parrondo’s paradox with two-coin quantum walks. R. Soc. Open Sci. 5, 171599 (2018)CrossRefGoogle Scholar
  2. 2.
    Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48(2), 1687–1690 (1993)ADSCrossRefGoogle Scholar
  3. 3.
    Kendon, V.: A random walk approach to quantum algorithms. Philos. Trans. R. Soc. A 364, 3407–3422 (2006)ADSMathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Venegas-Andraca, S.: Quantum Walks for Computer Scientists, vol. 1. Morgan & Claypool Publishers, San Rafael (2008)MATHGoogle Scholar
  5. 5.
    Venegas-Andraca, S.: Quantum walks: a comprehensive review. Quantum Inf. Process. 11(5), 1015–1106 (2012)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Machida, T., Konno, N.: Limit theorem for a time-dependent coined quantum walk on the line. In: Peper, F., et al. (eds.) IWNC 2009, Proceedings in Information and Communications Technology, 2, pp. 226–235 (2010)Google Scholar
  7. 7.
    Konno, N., Machida, T.: Limit theorems for quantum walks with memory. Quantum Inf. Comput. 10(11&12), 1004–1017 (2010)MathSciNetMATHGoogle Scholar
  8. 8.
    Machida, T.: Limit theorems of a 3-state quantum walk and its application for discrete uniform measures. Quantum Inf. Comput. 15(5&6), 406–418 (2015)MathSciNetGoogle Scholar
  9. 9.
    Grimmett, G., Janson, S., Scudo, P.F.: Weak limits for quantum random walks. Phys. Rev. E 69(2), 026119 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    Nayak, A., Vishwanath, A.: Quantum walk on the line. DIMACS Technical Reports, 43 (2000)Google Scholar
  11. 11.
    Ambainis, A., Bach, E., Nayak, A., Vishwanath, A., Watrous, J.: One-dimensional quantum walks. In: Proceedings of 33rd Annual ACM STOC, pp. 37–49, ACM, New York (2001)Google Scholar
  12. 12.
    Carteret, H., Ismail, M., Richmond, B.: Three routes to the exact aymptotics for the one dimensional random quantum walk. J. Phys. A 36, 8775–8795 (2003)ADSMathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Liu, C.: Asymptotic distributions of quantum walks on the line with two entangled coins. Quantum Inf. Process. 11(5), 1193–1205 (2012)ADSMathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Dym, H., McKean, H.P., jr, H.P.: Fourier Series and Integrals. Academic Press, Cambridge (1972)MATHGoogle Scholar
  15. 15.
    Konno, N.: Quantum walks. In: Quantum Potential Theory. Springer Lectures in Mathematics (2008)Google Scholar
  16. 16.
    Billingsley, P.: Probability and Measure, 3rd edn. Wiley, Hoboken (1995)MATHGoogle Scholar
  17. 17.
    Selvitella, A.: The Simpson’s paradox in quantum mechanics. J. Math. Phys. 58, 032101 (2017)ADSMathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Feynman, R., Leighton, P., Sands, M.: Feynman Lectures on Physics, vol. 1. Addison-Wesley, Reading (1963)MATHGoogle Scholar
  19. 19.
    Parrondo, J., Espagnol, P.: Criticism of Feynman’ analysis of the ratchet as an engine. Am. J. Phys. 64, 837–847 (1996)CrossRefGoogle Scholar
  20. 20.
    Parrondo, J., Dinis, L.: Brownian motion and gambling: from ratches to paradoxical games. Contemp. Phys. 64(2), 147–157 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    Etheir, S.: The Doctrine of Chances. Springer, Berlin (2010)CrossRefGoogle Scholar
  22. 22.
    Harmer, G.P., Abbott, D.: A review of Parrondo’s paradox. Fluct. Noise Lett. 158(2), R71–R107 (2002)CrossRefGoogle Scholar
  23. 23.
    Meyer, D.A.: Noisy quantum Parrondo game, Fluctuations and Noise in Photonics and Quantum Optics. In: Proceedings of SPIE 5111, pp. 344–351 (2003)Google Scholar
  24. 24.
    Meyer, D.A., Blumer, H.: Parrondo games as lattice gas automata. J. Stat. Phys. 107(1–2), 225–239 (2002)CrossRefMATHGoogle Scholar
  25. 25.
    Flitney, A.P., Ng, J., Abbott, D.: Quantum Parrondo’s games. Physica A 314, 35–42 (2002)ADSMathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Harmer, G.P., Abbott, D.: Quantum Parrondo games. Stat. Sci. 14(2), 206–213 (1999)CrossRefGoogle Scholar
  27. 27.
    Chandrashekar, C.M., Banerjee, S.: Parrondo’s game usng a discrete-time quantum walk. Phys. Lett. A 375(14), 1553–1558 (2011)ADSMathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Flitney, A.P.: Quantum Parrondo’s games using quantum walks. arXiv:1209.2252 (2012)
  29. 29.
    Li, M., Zhang, Y., Guo, G.: Quantum Parrondo’s games constructed by quantum random walks. Fluct. Noise Lett. 12(4), 1350024 (2013)CrossRefGoogle Scholar
  30. 30.
    Pejic, M.: Bayesian quantum networks with application to games displaying Parrondo’s paradox. arXiv:1503.08868 (2015)
  31. 31.
    Grünbaum, F.A., Pejic, M.: Maximal Parrondo’s paradox for classical and quantum Markov chains. Lett. Math. Phys. 106(2), 251–267 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Industrial TechnologyNihon UniversityNarashinoJapan
  2. 2.Department of MathematicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations