Advertisement

Quantum Information Processing

, 17:247 | Cite as

Two authenticated quantum dialogue protocols based on three-particle entangled states

  • Jia-Min Qi
  • Gang Xu
  • Xiu-Bo Chen
  • Tian-Yin Wang
  • Xiao-Qiu Cai
  • Yi-Xian Yang
Article
  • 18 Downloads

Abstract

In this paper, we propose two authenticated quantum dialogue protocols based on three-particle entangled states, which are both completely secure and more efficient. The first controlled quantum dialogue protocol with authentication is creatively proposed, which is secure under not only some famous external attacks but also internal attacks, for example, the dishonest controller’s attack. This protocol has a slightly increasing efficiency and less qubit cost compared to previous protocols. Besides, we present the second authenticated quantum dialogue protocol, which has a high efficiency with 80% by integrating dense coding. This protocol can also resist various well-known attacks.

Keywords

Controlled and authenticated quantum dialogue Authenticated quantum dialogue Three-particle entangled states Security analyses 

Notes

Acknowledgements

Project supported by NSFC (Grant Nos. 61671087, 61272514, 61170272, 61003287, 61572246, 61602232, 61373131), the Fok Ying Tong Education Foundation (Grant No. 131067), the Major Science and Technology Support Program of Guizhou Province under Grant 20183001, Open Foundation of Guizhou Provincial Key Laboratory of Public Big Data (2017BDKFJJ007), the Plan for Scientific Innovation Talents of Henan Province (164100510003) and the Program for Science & Technology Innovation Research Team in Universities of Henan Province (Grant No. 18IRTSTHN014).

References

  1. 1.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tosssing. (1984)Google Scholar
  2. 2.
    Deng, F.-G., Long, G.-L., Liu, X.-S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68(4), 042317 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    Deng, F.-G., Long, G.-L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69(5), 052319 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    Li, J., et al.: Quantum secure direct communication based on dense coding and detecting eavesdropping with four-particle genuine entangled state. Entropy 17(10), 6743–6752 (2015)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Farouk, A., Zakaria, M., Megahed, A., et al.: A generalized architecture of quantum secure direct communication for N disjointed users with authentication. Sci. Rep. 5 (2015)Google Scholar
  6. 6.
    Cui, Y., Sun, J.: Fixed point theorems for a class of nonlinear operators in hilbert spaces with lattice structure and application. Fix. Point Theory Appl. 2013, 345 (2013).  https://doi.org/10.1186/1687-1812-2013-345 MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Dai, X., Yang, F.: Complete controllability of impulsive stochastic integrodifferential systems in hilbert space. Abstr. Appl. Anal. 2013, 279–296 (2013)MathSciNetGoogle Scholar
  8. 8.
    Wang, S.-K., Zha, X.-W., Wu, H.: Controlled secure direct communication with seven-qubit entangled states. Int. J. Theor. Phys. 57(1), 48–58 (2018)CrossRefMATHGoogle Scholar
  9. 9.
    Li, D., et al.: Fault-tolerant distribution of GHZ states and controlled DSQC based on parity analyses. Opt. Express 25(16), 18581–18591 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    Lee, H., Lim, J., Yang, H.J.: Quantum direct communication with authentication. Phys. Rev. A 73(4), 042305 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    Yu, C.-H., Guo, G.-D., Lin, S.: Quantum secure direct communication with authentication using two nonorthogonal states. Int. J. Theor. Phys. 52(6), 1937–1945 (2013)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Yan, C., et al.: A multiparty controlled bidirectional quantum secure direct communication and authentication protocol based on EPR pairs. Chin. Phys. Lett. 30(6), 060301 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    Yang, C.-W., Hwang, T., Lin, T.-H.: Modification attack on QSDC with authentication and the improvement. Int. J. Theor. Phys. 52(7), 2230–2234 (2013)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Jiang, T., Jiang, J., Ling, S.: An algebraic method for quaternion and complex least squares coneigen-problem in quantum mechanics. Appl. Math. Comput. 249, 222–228 (2014)MathSciNetMATHGoogle Scholar
  15. 15.
    Dong, H., Zhang, Y., Zhang, Y., Yin B.: Generalized bilinear differential operators, binary bell polynomials, and exact periodic wave solution of boiti-leon-manna-pempinelli equation. In Abstract and Applied Analysis (2014)Google Scholar
  16. 16.
    Chang, Y., et al.: Controlled quantum secure direct communication and authentication protocol based on five-particle cluster state and quantum one-time pad. Chin. Sci. Bull. 59(21), 2541–2546 (2014)CrossRefGoogle Scholar
  17. 17.
    Kang, M.-S., et al.: Controlled mutual quantum entity authentication using entanglement swapping. Chin. Phys. B 24(9), 090306 (2015)CrossRefGoogle Scholar
  18. 18.
    Li, N., et al.: Deterministic secure quantum communication and authentication protocol based on extended GHZ-W state and quantum one-time pad. Int. J. Theor. Phys. 55(8), 3579–3587 (2016)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Nanvakenari, M., Houshmand, M.: An efficient controlled quantum secure direct communication and authentication by using four particle cluster states. Int. J. Quantum Inf. 15(01), 1750002 (2017)CrossRefMATHGoogle Scholar
  20. 20.
    Nguyen, B.A.: Quantum dialogue. Phys. Lett. A 328(1), 6–10 (2004)ADSMathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Shi, G.-F., et al.: Quantum secure dialogue by using single photons. Opt. Commun. 283(9), 1984–1986 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    Man, Z.-X., Xia, Y.-J.: Controlled bidirectional quantum direct communication by using a GHZ state. Chin. Phys. Lett. 23(7), 1680 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    Xia, Y., et al.: Controlled secure quantum dialogue using a pure entangled GHZ states. Commun. Theor. Phys. 48(5), 841 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    Xia, Y.-J., Man, Z.-X.: Controlled quantum n-party simultaneous direct communication. Commun. Theor. Phys. 48(1), 79 (2007)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Ye, T.-Y., Jiang, L.-Z.: Improvement of controlled bidirectional quantum direct communication using a GHZ state. Chin. Phys. Lett. 30(4), 040305 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    Chang, C.-H., et al.: Intercept-and-resend attack on controlled bidirectional quantum direct communication and its improvement. Quantum Inf. Process. 14(9), 3515–3522 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Kao, S.-H., Hwang, T.: Controlled quantum dialogue robust against conspiring users. Quantum Inf. Process. 15(10), 4313–4324 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Kao, S.-H., Hwang, T.: Controlled quantum dialogue using cluster states. Quantum Inf. Process. 16(5), 139 (2017)ADSCrossRefMATHGoogle Scholar
  29. 29.
    Mohapatra, A.K., Balakrishnan, S.: Controller-independent bidirectional quantum direct communication. Quantum Inf. Process. 16(6), 147 (2017)ADSMathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Naseri, M.: An efficient protocol for quantum secure dialogue with authentication by using single photons. In: International Conference on Quantum Information. Optical Society of America (2011)Google Scholar
  31. 31.
    Shen, D.-S., et al.: Quantum dialogue with authentication based on Bell states. Int. J. Theor. Phys. 52(6), 1825–1835 (2013)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Lin, C.-Y., Yang, C.-W., Hwang, T.: Authenticated quantum dialogue based on Bell states. Int. J. Theor. Phys. 54(3), 780–786 (2015)CrossRefMATHGoogle Scholar
  33. 33.
    Xiao, M., Cao, Y.-R., Song, X.-L.: Efficient and secure authenticated quantum dialogue protocols over collective-noise channels. Chin. Phys. Lett. 34(3), 030302 (2017)ADSCrossRefGoogle Scholar
  34. 34.
    Lin, T.-H., Lin, C.-Y., Hwang, T.: Man-in-the-Middle Attack on quantum dialogue with authentication based on Bell states. Int. J. Theor. Phys. 52(9), 3199–3203 (2013)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Li, Q., Chan, W.-H., Long, D.-Y.: Semiquantum secret sharing using entangled states. Phys. Rev. A 82(2), 022303 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    Long, G.-L., Liu, X.-S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002)ADSCrossRefGoogle Scholar
  37. 37.
    Lucamarini, M., Mancini, S.: Secure deterministic communication without entanglement. Phys. Rev. Lett. 94(14), 140501 (2005)ADSCrossRefGoogle Scholar
  38. 38.
    Li, X.-H., Deng, F.-G., Zhou, H.-Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74(5), 054302 (2006)ADSCrossRefGoogle Scholar
  39. 39.
    Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85(26), 5635 (2000)ADSCrossRefGoogle Scholar
  40. 40.
    Zhi-Hao, L., Han-Wu, C.: Comment on “Improvement of controlled bidirectional quantum direct communication using a GHZ state”. Chin. Phys. Lett. 30(7), 079901 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jia-Min Qi
    • 1
  • Gang Xu
    • 1
  • Xiu-Bo Chen
    • 1
    • 2
  • Tian-Yin Wang
    • 3
  • Xiao-Qiu Cai
    • 3
  • Yi-Xian Yang
    • 2
    • 1
  1. 1.State Key Laboratory of Networking and Switching Technology, Information Security CenterBeijing University of Posts and TelecommunicationsBeijingChina
  2. 2.Guizhou Provincial Key Laboratory of Public Big DataGuiZhou UniversityGuiyangChina
  3. 3.School of Mathematical ScienceLuoyang Normal UniversityLuoyangChina

Personalised recommendations