Advertisement

Quantum Information Processing

, 17:244 | Cite as

A dynamic multiparty quantum direct secret sharing based on generalized GHZ states

  • Yun Song
  • Zhihui Li
  • Yongming Li
Article
  • 75 Downloads

Abstract

This paper proposes a new dynamic multiparty quantum direct secret sharing (DQDSS) using mutually unbiased measurements based on generalized GHZ states. Without any unitary operations, an agent can obtain a shadow of the secret by simply performing a measurement on single photons. In the proposed scheme, multiple agents can be added or deleted and the shared secret need not be changed. Our DQDSS scheme has several advantages. The dealer is not required to retain any photons and can further share a predetermined key instead of a random key to the agents. Agents can update their shadows periodically, and the dealer does not need to be online. Furthermore, the proposed scheme can resist not only the existing attacks, but also cheating attacks from dishonest agents. Hence, compared to some famous DQSS schemes, the proposed scheme is more efficient and more practical. Finally, we establish a mathematical model about the efficiency and security of the scheme and perform simulation analyses with different parameters using MATLAB.

Keywords

Dynamic quantum secret sharing Generalized GHZ state Multiparty Security 

Notes

Acknowledgements

The authors would like to thank the anonymous referees for their very valuable comments that enhance the quality of this paper. This work was supported by the National Natural Science Foundation of China (61602291, 61671280, 11671244) and China Postdoctoral Science Foundation (2018M633456).

References

  1. 1.
    Smith, A.: Multi-party quantum computation. Arxiv Cornell University Library (2001)Google Scholar
  2. 2.
    Liu, B., Xiao, D., Huang, W., et al.: Quantum private comparison employing single-photon interference. Quantum Inf. Process. 16, 180 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Tseng, H.Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inf. Process. 11, 373–384 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Sharma, R.D., Thapliyal, K., Pathak, A.: Quantum sealed-bid auction using a modified scheme for multiparty circular quantum key agreement. Quantum Inf. Process. 16, 169 (2017)ADSCrossRefzbMATHGoogle Scholar
  5. 5.
    Gao, F., Liu, B., Huang, W., et al.: Postprocessing of the oblivious key in quantum private query. IEEE J. Sel. Top. Quantum Electron. 21, 98–108 (2014)ADSGoogle Scholar
  6. 6.
    Huang, W., Wen, Q.Y., Liu, B., et al.: Robust and efficient quantum private comparison of equality with collective detection over collective-noise channels. Sci. China-Phys. Mech. Astron. 56, 1670–1678 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    Zhang, L., Sun, H.W., Zhang, K.J., et al.: An improved arbitrated quantum signature protocol based on the key-controlled chained CNOT encryption. Quantum Inf. Process. 16, 70 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Zeng, G., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65, 042312 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    Hillery, M., Buzek, V., Berthiaunie, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1840 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162–168 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    Lu, H., et al.: Secret sharing of a quantum state. Phys. Rev. Lett. 117, 030501 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    Gao, X., Zhang, S., Chang, Y.: Cryptanalysis and improvement of the semi-quantum secret sharing protocol. Int. J. Theor. Phys. 56, 2512–2520 (2017)CrossRefzbMATHGoogle Scholar
  14. 14.
    Matsumoto, R.: Unitary reconstruction of secret for stabilizer-based quantum secret sharing. Quantum Inf. Process. 16, 202 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Bai, C.M., Li, Z.H., et al.: Quantum secret sharing using the \(d\)-dimensional GHZ state. Quantum Inf. Process. 16, 59 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Qin, H.W., Zhu, X.H., Dai, Y.W.: A proactive quantum secret sharing scheme based on GHZ state. Mod. Phys. Lett. B 29, 550165 (2015)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Yu, K.F., et al.: Multi-party semi-quantum key distribution-convertible multi-party semi-quantum secret sharing. Quantum Inf. Process. 16, 194 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Fiedler, L., Naaijkens, P., Osborne, T.J.: Jones index, secret sharing and total quantum dimension. New J. Phys. 19, 023039 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    Kogias, I., Xiang, Y., He, Q., et al.: Unconditional security of entanglement-based continuous-variable quantum secret sharing. Phys. Rev. A 95, 012315 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    Wang, J., Li, L., Peng, H., et al.: Quantum-secret-sharing scheme based on local distinguishability of orthogonal multiqudit entangled states. Phys. Rev. A 95, 022320 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    Chen, X.B., Dou, Z., Xu, G., et al.: A kind of universal quantum secret sharing protocol. Sci. Rep. 7, 39845 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    Xu, T.T., Li, Z.H., et al.: A new improving quantum secret sharing scheme. Int. J. Theor. Phys. 56, 1–10 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Ahmadi, M., Wu, Y.D., Sanders, B.C.: Relativistic (2, 3)-threshold quantum secret sharing. Phys. Rev. D Part. Fields 96, 065018 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    Abulkasim, H., Hamad, S., et al.: Quantum secret sharing with identity authentication based on Bell states. Int. J. Quantum Inf. 15, 1750023 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Hsu, J.L., Chong, S.K., Hwang, T., Tsai, C.W.: Dynamic quantum secret sharing. Quantum Inf. Process. 12, 331–344 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Jia, H.Y., Wen, Q.Y., Gao, F., et al.: Dynamic quantum secret sharing. Phys. Lett. A 376, 1035–1041 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Chen, Q., Chen, J., Wang, K., Du, J.: Efficient construction of two-dimensional cluster states with probabilistic quantum gates. Phys. Rev. A 73, 012303 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    Wang, T.Y., Li, Y.P.: Cryptanalysis of dynamic quantum secret sharing. Quantum Inf. Process. 12, 1991–1997 (2013)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Liao, C.H., Yang, C.W., Hwang, T.: Dynamic quantum secret sharing protocol based on GHZ state. Quantum Inf. Process. 13, 1907–1916 (2014)ADSCrossRefzbMATHGoogle Scholar
  30. 30.
    Qin, H., Dai, Y.: Dynamic quantum secret sharing by using \(d\)-dimensional GHZ state. Quantum Inf. Process. 16, 64 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Shi, R.H., Mu, Y., Zhong, H., et al.: Secure multiparty quantum computation for summation and multiplication. Sci. Rep. 6, 19655 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    Vaccaro, J.A., Spring, J., Chefles, A.: Quantum protocols for anonymous voting and surveying. Phys. Rev. A 75, 10064–10070 (2007)CrossRefGoogle Scholar
  33. 33.
    Huang, W., Wen, Q.Y., Liu, B., et al.: Quantum anonymous ranking. Phys. Rev. A 89, 87–90 (2014)Google Scholar
  34. 34.
    Dolev, S., Pitowsky, I., Tamir, B.A.: Quantum secret ballot. Computer Science (2006)Google Scholar
  35. 35.
    Pittenge, A.O., Rubin, M.H.: Mutually unbiased bases, generalized spin matrices and separability. Linear Algebra Appl. 390, 255–278 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Jennewein, T., Simon, C., Weihs, G., et al.: Quantum cryptography with entangled photons. Phys. Rev. Lett. 84, 4729 (2000)ADSCrossRefGoogle Scholar
  37. 37.
    Beveratos, A., Brouri, R., Gacoin, T., et al.: Single photon quantum cryptography. Phys. Rev. Lett. 89, 187901 (2002)ADSCrossRefGoogle Scholar
  38. 38.
    Hughes, R.J., Nordholt, J.E., Derkacs, D., et al.: Practical free-space quantum key distribution over 10 km in daylight, and at night. New J. Phys. 4, 3283–3286 (2002)CrossRefGoogle Scholar
  39. 39.
    Gobby, C., Yuan, Z.L., Shields, A.J.: Quantum key distribution over 122 km of standard telecom fiber. Appl. Phys. Lett. 84, 3762–3764 (2004)ADSCrossRefGoogle Scholar
  40. 40.
    Shi, R.H., Huang, L.S., Yang, W., et al.: Multiparty quantum secret sharing with Bell states and Bell. Opt. Commun. 283, 2476–2480 (2010)ADSCrossRefGoogle Scholar
  41. 41.
    Gao, F., Guo, F.Z., Wen, Q.Y., et al.: Quantum key distribution without alternative measurements and rotations. Phys. Rev. A 349, 53–58 (2006)zbMATHGoogle Scholar
  42. 42.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  43. 43.
    Cai, Q.Y., Li, B.W.: Improving the capacity of the Boström–Felbinger protocol. Phys. Rev. A 69, 521–524 (2004)CrossRefGoogle Scholar
  44. 44.
    Barnum, H., Caves, C.M., Fuchs, C.A., et al.: Noncommuting mixed states cannot be broadcast. Phys. Rev. Lett. 76, 2818–2821 (1996)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Computer ScienceShaanxi Normal UniversityXi’anChina
  2. 2.School of Mathematics and Information ScienceShaanxi Normal UniversityXi’anChina

Personalised recommendations