Multiparty quantum key agreement protocol based on locally indistinguishable orthogonal product states

  • Dong-Huan Jiang
  • Guang-Bao XuEmail author


Based on locally indistinguishable orthogonal product states, we propose a novel multiparty quantum key agreement (QKA) protocol. In this protocol, the private key information of each party is encoded as some orthogonal product states that cannot be perfectly distinguished by local operations and classical communications. To ensure the security of the protocol with small amount of decoy particles, the different particles of each product state are transmitted separately. This protocol not only can make each participant fairly negotiate a shared key, but also can avoid information leakage in the maximum extent. We give a detailed security proof of this protocol. From comparison result with the existing QKA protocols, we can know that the new protocol is more efficient.


Quantum key agreement Local indistinguishability Orthogonal product states 



This work is supported by NSFC (Grant Nos. 61402148, 61601171) and Project of Science and Technology Department of Henan Province of China (172102210275).


  1. 1.
    Diffie, W., Hellman, M.: New direction in cryptography. IEEE Trans. Inf. Theory 22, 644–654 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ingemarsson, I., Tang, D.T., Wong, C.K.: A conference key distribution system. IEEE Trans. Inf. Theory 28, 714–719 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Steiner, M., Tsudik, G., Waidner, M.: Key agreement in dynamic peer groups. IEEE Trans. Parallel Distrib. Syst. 11, 769–780 (2000)CrossRefGoogle Scholar
  4. 4.
    Mitchell, C.J., Ward, M., Wilson, P.: Key control in key agreement protocols. Electron. Lett. 34(10), 980–981 (1998)CrossRefGoogle Scholar
  5. 5.
    Ateniese, G., Steiner, M., Tsudik, G.: New multiparty authentication services and key agreement protocols. IEEE J. Sel. Areas Commun. 18(4), 628–639 (2000)CrossRefGoogle Scholar
  6. 6.
    Wang, T.Y., Wen, Q.Y., Chen, X.B.: Cryptanalysis and improvement of a multi-user quantum key distribution protocol. Opt. Commun. 283(24), 5261–5263 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    Salas, P.J.: Security of plug-and-play QKD arrangements with finite resources. Quantum Inf. Comput. 13, 861–879 (2013)Google Scholar
  8. 8.
    Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pairblock. Phys. Rev. A 68, 042317 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    Cui, Y.J.: Uniqueness of solution for boundary value problems for fractional differential equations. Appl. Math. Lett. 51, 48–54 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Qin, S.J., Gao, F., Wen, Q.Y., et al.: Improving the security of multiparty quantum secret sharing against an attack with a fake signal. Phys. Lett. A 357, 101–103 (2006)ADSCrossRefzbMATHGoogle Scholar
  11. 11.
    Gao, F., Guo, F.Z., Wen, Q.Y., et al.: Quantum key distribution without alternative measurements and rotations. Phys. Lett. A 349, 53–58 (2006)ADSCrossRefzbMATHGoogle Scholar
  12. 12.
    Long, G.L., Liu, X.S.: Theoretically efficent high capacity quantum key distribution scheme. Phys. Rev. A 65, 032302 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger–Horn–Zeilinger state. Opt. Commun. 283, 192–195 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    Huang, W., Zuo, H.J., Li, Y.B.: Cryptanalysis and improvement of a multi-user quantum communication network using type entangled states. Int. J. Theor. Phys. 52, 1354–1361 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Lin, S., Wen, Q.Y., Zhu, F.C.: Quantum secure direct communication with \(\chi \)-type entangled ststes. Phy. Rev. A 78, 064304 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    Tseng, H.Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inf. Process. 11, 373–384 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Liu, W., Wang, Y.B., Jiang, Z.T.: An efficient protocol for the quantum private comparison of equality with W state. Opt. Commun. 284, 3160–3163 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    Martini, F.D., Giovannetti, V., Lloyd, S., Maccone, L., et al.: Experimental quantum private queries with linear optics. Phys. Rev. A 80, 010302 (2009)CrossRefGoogle Scholar
  21. 21.
    Jakobi, M., Simon, C., Gisin, N., Bancal, J.D., et al.: Practical private database queries based on a quantum-key-distribution protocol. Phys. Rev. A 83, 022301 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    Gao, F., Liu, B., Huang, W., Wen, Q.Y.: Postprocessing of the oblivious key in quantum private query. IEEE. J. Sel. Top. Quantum 21, 6600111 (2015)Google Scholar
  23. 23.
    Wei, C.Y., Wang, T.Y., Gao, F.: Practical quantum private query with better performance in resisting joint-measurement attack. Phys. Rev. A 93, 042318 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    Wei, C.Y., Cai, X.Q., Liu, B., et al.: A generic construction of quantum-oblivious-key-transfer-based private query with ideal database security and zero failure. IEEE Trans. Comput. 67(1), 2–8 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Zeng, G.H., Keitel, C.H.: An arbitrated quantum signature algorithm. Phys. Rev. A 65, 042312 (2002)ADSCrossRefGoogle Scholar
  26. 26.
    Lee, H., Hong, C.H., Kim, H., et al.: Arbitrated quantum signature scheme with message recovery. Phys. Rev. A 321, 295–300 (2004)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Wen, X.J., Niu, X.M., Ji, L.P.: A weak blind signature scheme based on quantum cryptography. Opt. Commun. 282, 666–669 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    Wang, T.Y., Wen, Q.Y.: Fair quantum blind sigantures. Chin. Phys. B 19, 060307–060311 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    Wen, X.J., Tian, Y., Niu, X.M.: A group signature scheme based on quantum teleportation. Phys. Scr. 81, 055001–055006 (2010)ADSCrossRefzbMATHGoogle Scholar
  30. 30.
    Liu, F., Qin, S.J., Su, Q.: An arbitrated quantum signature scheme with fast signing and verifying. Quantum Inf. Process. 13, 491–502 (2014)ADSCrossRefzbMATHGoogle Scholar
  31. 31.
    Xu, G.B., Zhang, K.J.: A novel quantum group signature scheme without using entangled states. Quantum Inf. Process. 14, 2577–2587 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Xu, G.B.: Novel quantum proxy signature without entanglement. Int. J. Theor. Phys. 54(8), 2605–2612 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Zhou, N., Zeng, G., Xiong, J.: Quantum key agreement protocol. Electron. Lett. 40, 1149–1150 (2004)CrossRefGoogle Scholar
  34. 34.
    Tsai, C., Hwang, T.: On quantum key agreement protocol. Technical report, C-S-I-E, NCKU, Taiwan, ROC (2009)Google Scholar
  35. 35.
    Chong, S.K., Tsai, C.W., Hwang, T.: Improvement on quantum key agreement protocol with maximally entangled states. Int. J. Theor. Phys. 50(6), 1793–1802 (2011)CrossRefzbMATHGoogle Scholar
  36. 36.
    Shi, R.H., Zhong, H.: Multi-party quantum key agreement with bell states and bell measurements. Quantum Inf. Process. 12, 921–932 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Liu, B., Gao, F., Huang, W., Wen, Q.Y.: Multiparty quantum key agreement with single particles. Quantum Inf. Process. 12, 1797–1805 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Huang, W., Wen, Q.Y., Liu, B., Fei, G., Sun, Y.: Quantum key agreement with EPR pairs and single-particle measurements. Quantum Inf. Process. 13(3), 649–663 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Liu, B., Xiao, D., Jia, H.Y., Liu, R.Z.: Collusive attacks to circle-type multi-party quantum key agreement protocols. Quantum Inf. Process. 15, 2113 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Sun, Z.W., Zhang, C., Wang, B.H., et al.: Improvements on multiparty quantum key agreement with single particles. Quantum Inf. Process. 12(11), 3411–3420 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Shukla, C., Alam, N., Pathak, A.: Protocols of quantum key agreement solely using Bell states and Bell measurement. Quantum Inf. Process. 13(11), 2391–2405 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Zhu, Z.C., Hu, A.Q., Fu, A.M.: Improving the security of protocols of quantum key agreement solely using Bell states and Bell measurement. Quantum Inf. Process. 14(11), 4245–4254 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Sun, Z.W., Yu, J.P., Wang, P.: Efficient multi-party quantum key agreement by cluster states. Quantum Inf. Process. 15, 373–384 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Sun, Z.W., Zhang, C., Wang, P., Yu, J.P., Zhang, Y., Long, D.Y.: Multi-Party quantum key agreement by an entangled six-qubit state. Int. J. Theor. Phys. 55(3), 1920–1929 (2016)CrossRefzbMATHGoogle Scholar
  45. 45.
    Xu, G.B., Wen, Q.Y., Gao, F., Qin, S.J.: Novel multiparty quantum key agreement protocol with GHZ states. Quantum Inf. Process. 13(12), 2587–2594 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Yin, X.R., Wen, W.P., Shen, D.S., et al.: Three-party quantum key agreement with Bell states. Acta Phys. Sin. 62(17), 170304 (2013)Google Scholar
  47. 47.
    He, Y.F., Ma, W.P.: Quantum key agreement protocols with four-qubit cluster states. Quantum Inf. Process. 14(9), 3483–3498 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Yang, Y.H., Gao, F., Xu, G.B., Zuo, H.J., Zhang, Z.C., Wen, Q.Y.: Characterizing unextendible product bases in qutrit-ququad system. Sci. Rep. 5, 11963 (2015)ADSCrossRefGoogle Scholar
  49. 49.
    Ma, H.J., Jia, Y.M.: Stability analysis for stochastic differential equations with infinite Markovian switchings. J. Math. Anal. Appl. 435, 593–605 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Wang, Z., Huang, X., Shi, G.D.: Analysis of nonlinear dynamics and chaos in a fractional order financial system with time delay. Comput. Math. Appl. 62, 1531–1539 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Yu, S.X., Oh, C.H.: Detecting the local indistinguishability of maximally entangled states (2015). arXiv:1502.01274v1 [quant-ph]
  52. 52.
    Wang, Y.L., Li, M.S., Zheng, Z.J., Fei, S.M.: Nonlocality of orthogonal product-basis quantum states. Phys. Rev. A 92, 032313 (2015)ADSCrossRefGoogle Scholar
  53. 53.
    Zhang, Z.C., Gao, F., Cao, Y., Qin, S.J., Wen, Q.Y.: Local indistinguishability of orthogonal product states. Phys. Rev. A 93, 012314 (2016)ADSMathSciNetCrossRefGoogle Scholar
  54. 54.
    Xu, G.B., Wen, Q.Y., Qin, S.J., Yang, Y.H., Gao, F.: Quantum nonlocality of multipartite orthogonal product states. Phys. Rev. A 93(3), 032341 (2016)ADSCrossRefGoogle Scholar
  55. 55.
    Xu, G.B., Yang, Y.H., Wen, Q.Y., Qin, S.J., Gao, F.: Locally indistinguishable orthogonal product bases in arbitrary bipartite quantum system. Sci. Rep. 6, 31048 (2016)ADSCrossRefGoogle Scholar
  56. 56.
    Xu, G.B., Wen, Q.Y., Gao, F., Qin, S.J., Zuo, H.J.: Local indistinguishability of multipartite orthogonal product bases. Quantum Inf. Process. 16, 276 (2017)ADSCrossRefzbMATHGoogle Scholar
  57. 57.
    Guo, G.P., Li, C.F., et al.: Quantum key distribution scheme with orthogonal product states. Phys. Rev. A 64, 042301 (2001)ADSCrossRefGoogle Scholar
  58. 58.
    Zhao, Q.Y., Zhang, D.X., Li, X.Y.: Quantum key distribution protocol using orthogonal product quantum states. J. Univ. Electr. Sci. Technol. China 37(3), 401–403 (2008)MathSciNetGoogle Scholar
  59. 59.
    Yang, Y.G., Wen, Q.Y., Zhu, F.C.: An efficient quantum secret sharing protocol with orthogonal product states. Sci. China Phys. Mech. 50, 331–338 (2007)CrossRefzbMATHGoogle Scholar
  60. 60.
    Walgate, J., Hardy, L.: Nonlocality, asymmetry, and distinguishing bipartite states. Phys. Rev. Lett. 89, 147901 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)ADSCrossRefGoogle Scholar
  62. 62.
    Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74, 054302 (2006)ADSCrossRefGoogle Scholar
  63. 63.
    Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351, 23–25 (2006)ADSCrossRefzbMATHGoogle Scholar
  64. 64.
    Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635–5638 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Mathematics and Systems ScienceShandong University of Science and TechnologyQingdaoChina

Personalised recommendations