Simultaneous dense coding affected by fluctuating massless scalar field

Article
  • 36 Downloads

Abstract

In this paper, we investigate the simultaneous dense coding (SDC) protocol affected by fluctuating massless scalar field. The noisy model of SDC protocol is constructed and the master equation that governs the SDC evolution is deduced. The success probabilities of SDC protocol are discussed for different locking operators under the influence of vacuum fluctuations. We find that the joint success probability is independent of the locking operators, but other success probabilities are not. For quantum Fourier transform and double controlled-NOT operators, the success probabilities drop with increasing two-atom distance, but SWAP operator is not. Unlike the SWAP operator, the success probabilities of Bob and Charlie are different. For different noisy interval values, different locking operators have different robustness to noise.

Keywords

Simultaneous dense coding Massless scalar field Two-atom system 

Notes

Acknowledgements

This work is supported by the Science Foundation for Young Teachers of Wuyi University (Grant No. 2015zk01), the Doctoral Research Foundation of Wuyi University (2017BS07), and the Doctoral Research Foundation of Wuyi University (2016BS02).

References

  1. 1.
    Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)ADSMathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Hao, J.C., Li, C.F., Guo, G.C.: Probabilistic dense coding and teleportation. Phys. Lett. A 278, 113 (2000)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Werner, R.F.: All teleportation and dense coding schemes. J. Phys. A 34, 7081 (2001)ADSMathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Situ, H.Z.: Controlled simultaneous teleportation and dense coding. Int. J. Theor. Phys. 53, 1003 (2014)CrossRefMATHGoogle Scholar
  5. 5.
    Zhang, C., Situ, H.Z., Li, Q., He, G.P.: Efficient simultaneous dense coding and teleportation with two-photon four-qubit cluster states. Int. J. Quantum Inf. 14, 1650023 (2016)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bowen, G.: Classical information capacity of superdense coding. Phys. Rev. A 63, 022302 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    Hao, J.C., Li, C.F., Guo, G.C.: Controlled dense coding using the Greenberger–Horne–Zeilinger state. Phys. Rev. A 63, 054301 (2001)ADSCrossRefGoogle Scholar
  8. 8.
    Liu, X.S., Long, G.L., Tong, D.M., Li, F.: General scheme for superdense coding between multiparties. Phys. Rev. A 65, 022304 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    Mozes, S., Oppenheim, J., Reznik, B.: Deterministic dense coding with partially entangled states. Phys. Rev. A 71, 012311 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    Pati, A.K., Parashar, P., Agrawal, P.: Probabilistic superdense coding. Phys. Rev. A 72, 012329 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    Situ, H.Z.: Dense coding process with imperfect encoding operations. Int. J. Theor. Phys. 52, 3779 (2013)CrossRefMATHGoogle Scholar
  12. 12.
    Wang, M.Y., Yan, F.L., Gao, T., Li, Y.C.: Simultaneous quantum state teleportation via the locked entanglement channel. Int. J. Quantum Inf. 6, 201 (2008)CrossRefMATHGoogle Scholar
  13. 13.
    Situ, H.Z., Qiu, D.W.: Simultaneous dense coding. J. Phys. A Math. Theor. 43, 055301 (2010)ADSMathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Situ, H.Z., Qiu, D.W., Mateus, P., Paunkovic, N.: Secure N-dimensional simultaneous dense coding and applications. Int. J. Quantum Inf. 13, 1550051 (2015)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Benatti, F., Floreanini, R.: Controlling entanglement generation in external quantum fields. J. Opt. B Quantum Semiclassical Opt. 7, S429 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    Hu, J.W., Yu, H.W.: Entanglement dynamics for uniformly accelerated two-level atoms. Phys. Rev. A 91, 012327 (2015)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Huang, Z.M., Situ, H.Z.: Dynamics of quantum correlation and coherence for two atoms coupled with a bath of fluctuating massless scalar field. Ann. Phys. 377, 484 (2017)ADSCrossRefMATHGoogle Scholar
  18. 18.
    Huang, Z.M., Zhang, C., Situ, H.Z.: Performance analysis of simultaneous dense coding protocol under decoherence. Quantum Inf. Process. 16, 227 (2017)ADSMathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Phillips, N.G., Hu, B.L.: Vacuum energy density fluctuations in Minkowski and Casimir states via smeared quantum fields and point separation. Phys. Rev. D 62, 084017 (2000)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Ford, L.H., Roman, T.A.: Minkowski vacuum stress tensor fluctuations. Phys. Rev. D 72, 105010 (2005)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Pozas-Kerstjens, A., Martín-Martínez, E.: Harvesting correlations from the quantum vacuum. Phys. Rev. D 92, 064042 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    Pozas-Kerstjens, A., Martín-Martínez, E.: Entanglement harvesting from the electromagnetic vacuum with hydrogenlike atoms. Phys. Rev. D 94, 064074 (2016)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Liang, H.Q., Liu, J.M., Feng, S.S., Chen, J.G., Xu, X.Y.: Effects of noises on joint remote state preparation via a GHZ-class channel. Quantum Inf. Process. 14, 3857 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Li, Y.H., Jin, X.M.: Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments. Quantum Inf. Process. 15, 929 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Wang, M.M., Qu, Z.G.: Effect of quantum noise on deterministic joint remote state preparation of a qubit state via a GHZ channel. Quantum Inf. Process. 15, 4805 (2016)ADSCrossRefMATHGoogle Scholar
  26. 26.
    Banerjee, A., Shukla, C., Thapliyal, K., Pathak, A., Panigrahi, P.K.: Asymmetric quantum dialogue in noisy environment. Quantum Inf. Process. 16, 49 (2017)ADSMathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Yeo, Y., An, J.H., Oh, C.H.: Non-Markovian effects on quantum-communication protocols. Phys. Rev. A 82, 032340 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    Jun, J.W.: Non-Markovian effects on multiparticle entanglement swapping. Eur. Phys. J. D 67, 237 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    Li, J.F., Liu, J.M., Xu, X.Y.: Deterministic joint remote preparation of an arbitrary two-qubit state in noisy environments. Quantum Inf. Process. 14, 3465 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Thapliyal, K., Pathak, A., Banerjee, S.: Quantum cryptography over non-Markovian channels. Quantum Inf. Process. 16, 115 (2017)ADSMathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Audretsch, J., Muller, R.: Spontaneous excitation of an accelerated atom: the contributions of vacuum fluctuations and radiation reaction. Phys. Rev. A 50, 1755 (1994)ADSCrossRefGoogle Scholar
  32. 32.
    Milonni, P.W.: The Quantum Vacuum: An Introduction to Quantum Electrodynamics. Academic, San Diego (1994)Google Scholar
  33. 33.
    Ficek, Z., Tanas, R.: Entangled states and collective nonclassical effects in two-atom systems. Phys. Rep. 372, 369 (2002)ADSMathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Wang, G., Li, T., Deng, F.: High-efficiency atomic entanglement concentration for quantum communication network assisted by cavity QED. Quantum Inf. Process. 14, 1305 (2015)ADSCrossRefMATHGoogle Scholar
  35. 35.
    Yang, Z.G., Wu, T.T., Liu, J.M.: Remote state preparation via photonic Faraday rotation in low-Q cavities. Acta Phys. Sin. 65, 020302 (2016)Google Scholar
  36. 36.
    Tian, Z., Jing, J.: Geometric phase of two-level atoms and thermal nature of de Sitter spacetime. JHEP 04, 109 (2013)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Tian, Z., Jing, J.: Dynamics and quantum entanglement of two-level atoms in de Sitter spacetime. Ann. Phys. 350, 1 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Gorini, V., Kossakowski, A., Surdarshan, E.C.G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17, 821 (1976)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976)ADSMathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Economics and ManagementWuyi UniversityJiangmenChina

Personalised recommendations