Quantum demultiplexer of quantum parameter-estimation information in quantum networks

Article
  • 36 Downloads

Abstract

The quantum demultiplexer is constructed by a series of unitary operators and multipartite entangled states. It is used to realize information broadcasting from an input node to multiple output nodes in quantum networks. The scheme of quantum network communication with respect to phase estimation is put forward through the demultiplexer subjected to amplitude damping noises. The generalized partial measurements can be applied to protect the transferring efficiency from environmental noises in the protocol. It is found out that there are some optimal coherent states which can be prepared to enhance the transmission of phase estimation. The dynamics of state fidelity and quantum Fisher information are investigated to evaluate the feasibility of the network communication. While the state fidelity deteriorates rapidly, the quantum Fisher information can be enhanced to a maximum value and then decreases slowly. The memory effect of the environment induces the oscillations of fidelity and quantum Fisher information. The adjustment of the strength of partial measurements is helpful to increase quantum Fisher information.

Keywords

Quantum demultiplexer Network communication Quantum Fisher information Partial measurements 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of Jiangsu Province under Grant No. BK20170376, the Innovation Project of Graduate Education of Jiangsu Province No. JGLX15-150, the Qing Lan Project of Jiangsu Province and the Graduate Creative Projects in USTS No. SKYCX16-015 and No. SKCX5-06.

References

  1. 1.
    Monroe, C.: Quantum networks with trapped ions. Rev. Mod. Phys. 82(2), 1209–1224 (2007)Google Scholar
  2. 2.
    U’Ren, A.B., Silberhorn, C., Banaszek, K., Walmsley, I.A.: Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks. Phys. Rev. Lett. 93(9), 093601 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    Siomau, M., Fritzsche, S.: Evolution equation for entanglement of multiqubit systems. Phys. Rev. A 82(82), 13442–13444 (2010)Google Scholar
  4. 4.
    Gao, Y., Zhou, H., Zou, D., Peng, X., Du, J.: Preparation of Greenberger–Horne—Zeilinger and w states on a one-dimensional ising chain by global control. Phys. Rev. A 87(3), 379–388 (2013)CrossRefGoogle Scholar
  5. 5.
    Liu, S., Yu, R., Li, J., Wu, Y.: Generation of a multi-qubit w entangled state through spatially separated semiconductor quantum-dot-molecules in cavity-quantum electrodynamics arrays. J. Appl. Phys. 115(13), 1569 (2014)Google Scholar
  6. 6.
    Xiao, X., Yao, Y., Zhong, W.-J., Li, Y.-L., Xie, Y.-M.: Enhancing teleportation of quantum fisher information by partial measurements. Phys. Rev. A 93(1), 012307 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390(390), 575 (1997)ADSCrossRefMATHGoogle Scholar
  8. 8.
    Furusawa, A., Sørensen, J.L., Braunstein, S.L., Fuchs, C.A., Kimble, H.J., Polzik, E.S.: Unconditional quantum teleportation. Science 282(5389), 706–709 (1998)ADSCrossRefGoogle Scholar
  9. 9.
    Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)ADSMathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Tan, X., Zhang, X., Fang, J.: Perfect quantum teleportation by four-particle cluster state. Inf. Process. Lett. 116(5), 347–350 (2016)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Muralidharan, S., Jain, S., Panigrahi, P.K.: Splitting of quantum information using n-qubit linear cluster states. Opt. Commun. 284(4), 1082–1085 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    Hao, X., Wu, Y.: Quantum parameter estimation in the Unruh–DeWitt detector model. Ann. Phys. 372, 110–118 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Haine, S.A., Szigeti, S.S.: Quantum metrology with mixed states: when recovering lost information is better than never losing it. Phys. Rev. A 92(3), 032317 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    Hao, X., Wu, Y.: Quantum nonunital dynamics of spin-bath-assisted fisher information. AIP Adv. 6(4), 233601 (2016)CrossRefGoogle Scholar
  15. 15.
    Walmsley, I.A., Nunn, J.: Editorial: building quantum networks. Phys. Rev. Appl. 6, 040001 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    Ritter, S., Nölleke, C., Hahn, C., Reiserer, A., Neuzner, A., Uphoff, M., Mücke, M., Figueroa, E., Bochmann, J., Rempe, G.: An elementary quantum network of single atoms in optical cavities. Nature (London) 484, 195 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    Behzadi, N., Rudsary, S.K., Salmasi, B.A.: Perfect routing of quantum information in regular cavity QED networks. Eur. Phys. J. D 67(12), 1–9 (2013)CrossRefGoogle Scholar
  18. 18.
    Munro, W.J., Harrison, K.A., Stephen, A.M., Devitt, S.J., Nemoto, K.: From quantum multiplexing to high-performance quantum networking. Nat. Photonics 4, 792 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    Weiss, U.: Quantum Dissipative Systems, 2nd edn. World Scientific, Singapore (1999)CrossRefMATHGoogle Scholar
  20. 20.
    Gardiner, C.W., Zoller, P.: Quantum Noise. Springer, Berlin (1991)CrossRefMATHGoogle Scholar
  21. 21.
    Anandan, J., Aharonov, Y.: Geometry of quantum evolution. Phys. Rev. Lett. 65(14), 1697–1700 (1990)ADSMathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Watanabe, Y., Sagawa, T., Ueda, M.: Optimal measurement on noisy quantum systems. Phys. Rev. Lett. 104(2), 020401 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    Tan, Q.S., Huang, Y., Yin, X., Kuang, L.M., Wang, X.: Enhancement of parameter-estimation precision in noisy systems by dynamical decoupling pulses. Phys. Rev. A 87, 032102 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    Wang, S.C., Yu, Z.W., Wang, X.B.: Protecting quantum states from decoherence of finite temperature using weak measurement. Phys. Rev. A 89(2), 022318 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    Katz, N., Korotkov, A.N.: Coherent state evolution in a superconducting qubit from partial-collapse measurement. Science 312(5779), 1498–1500 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    Man, Z.X., An, N.B., Xia, Y.J.: Improved quantum state transfer via quantum partially collapsing measurements. Ann. Phys. 349(349), 209 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Collins, D., Stephens, J.: Depolarizing channel parameter estimation using noisy initial states. Phys. Rev. A 92, 032324 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    Zheng, Q., Ge, L., Yao, Y., Zhi, Q.: Enhancing parameter precision of optimal quantum estimation by direct quantum feedback. Phys. Rev. A 91, 033805 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    Blok, M.S., Bonato, C., Markham, M.L., Twitchen, D.J., Dobrovitski, V.V., Hanson, R.: Manipulating a qubit through the backaction of sequential partial measurements and real-time feedback. Nat. Phys. 10(3), 189–193 (2013)CrossRefGoogle Scholar
  30. 30.
    Clerk, A.A., Devoret, M.H., Girvin, S.M., Marquardt, F., Schoelkopf, R.J.: Introduction to quantum noise, measurement and amplification. Rev. Mod. Phys. 82(2), 1155–1208 (2010)ADSMathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Paraoanu, G.S.: Generalized partial measurements. Eur. Phys. Lett. 93, 64002 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    Paraoanu, G.S.: Extraction of information from a single quantum. Phys. Rev. A 83, 044101 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    Kim, Y.S., Lee, J.C., Kwon, O., Kim, Y.H.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8(2), 117–120 (2011)CrossRefGoogle Scholar
  34. 34.
    Korotkov, A.N., Jordan, A.N.: Undoing a weak quantum measurement of a solid-state qubit. Phys. Rev. Lett. 97(16), 166805 (2006)ADSCrossRefGoogle Scholar
  35. 35.
    Qiu, L., Tang, G., Yang, X., Wang, A.: Enhancing teleportation fidelity by means of weak measurements or reversal. Ann. Phys. 350(350), 137–145 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Pramanik, T., Majumdar, A.S.: Improving the fidelity of teleportation through noisy channels using weak measurement. Phys. Lett. A 377(44), 3209–3215 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Behzadi, N., Bahram, A.: Enhancing quantum state transfer efficiency in binary-tree spin networks by partially collapsing measurements. arXiv:1611.03035
  38. 38.
    Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press, Cambridge (1976)MATHGoogle Scholar
  39. 39.
    Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)MATHGoogle Scholar
  40. 40.
    Breuer, H.P., Laine, E.M., Piilo, J., Vacchini, B.: Colloquium: non-markovian dynamics in open quantum systems. Rev. Mod. Phys. 88(2), 021002 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yanqing Xie
    • 1
  • Yumeng Huang
    • 1
  • Yinzhong Wu
    • 1
  • Xiang Hao
    • 1
  1. 1.Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Mathematics and PhysicsSuzhou University of Science and TechnologySuzhouPeople’s Republic of China

Personalised recommendations