Circuit QED: generation of two-transmon-qutrit entangled states via resonant interaction

  • Xi-Mei Ye
  • Zhen-Fei Zheng
  • Dao-Ming Lu
  • Chui-Ping Yang
Article
  • 102 Downloads

Abstract

We present a way to create entangled states of two superconducting transmon qutrits based on circuit QED. Here, a qutrit refers to a three-level quantum system. Since only resonant interaction is employed, the entanglement creation can be completed within a short time. The degree of entanglement for the prepared entangled state can be controlled by varying the weight factors of the initial state of one qutrit, which allows the prepared entangled state to change from a partially entangled state to a maximally entangled state. Because a single cavity is used, only resonant interaction is employed, and none of identical qutrit–cavity coupling constant, measurement, and auxiliary qutrit is needed, this proposal is easy to implement in experiments. The proposal is quite general and can be applied to prepare a two-qutrit partially or maximally entangled state with two natural or artificial atoms of a ladder-type level structure, coupled to an optical or microwave cavity.

Keywords

Qutrit Transmon qutrit Entangled state Cavity Circuit QED 

Notes

Acknowledgements

This work was supported in part by the Natural Science Foundation of Fujian Province of China under Grant No. 2015J01020, the Zhejiang Natural Science Foundation under Grant No. LZ13A040002, the NKRDP of China (Grant No. 2016YFA0301802), and the National Natural Science Foundation of China under Grant Nos. (11074062, 11374083, 11774076).

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

References

  1. 1.
    Shor, P.W.: In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science. IEEE Computer Society Press, Santa Fe (1994)Google Scholar
  2. 2.
    Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)ADSMathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Schumacher, B.: Sending entanglement through noisy quantum channels. Phys. Rev. A 54, 2614 (1996)ADSCrossRefGoogle Scholar
  5. 5.
    Buzek, V., Hillery, M.: Quantum copying: beyond the no-cloning theorem. Phys. Rev. A 54, 1844 (1996)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    You, J.Q., Tsai, J.S., Nori, F.: Controllable manipulation of macroscopic quantum states in coupled charge qubits. Phys. Rev. B 68, 024510 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    Wei, L.F., Liu, Y.X., Nori, F.: Testing Bell’s inequality in constantly coupled Josephson circuits by effective single-qubit operations. Phys. Rev. B 72, 104516 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    Wei, L.F., Liu, Y.X., Nori, F.: Generation and control of Greenberger–Horne–Zeilinger entanglement in superconducting circuits. Phys. Rev. Lett. 96, 246803 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    Wei, L.F., Liu, Y.X., Storcz, M.J., Nori, F.: Macroscopic Einstein–Podolsky–Rosen pairs in superconducting circuits. Phys. Rev. A 73, 052307 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    Yang, C.P., Chu, S.I., Han, S.: Possible realization of entanglement, logical gates, and quantum-information transfer with superconducting-quantum-interference-device qubits in cavity QED. Phys. Rev. A 67, 042311 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    You, J.Q., Nori, F.: Quantum information processing with superconducting qubits in a microwave field. Phys. Rev. B 68, 064509 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    Blais, A., Huang, R.S., Wallraff, A., Girvin, S.M., Schoelkopf, R.J.: Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69, 062320 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    You, J.Q., Nori, F.: Superconducting circuits and quantum information. Phys. Today 58, 42 (2005)CrossRefGoogle Scholar
  14. 14.
    Clarke, J., Wilhelm, F.K.: Superconducting quantum bits. Nature 453, 1031 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    You, J.Q., Nori, F.: Atomic physics and quantum optics using superconducting circuits. Nature 474, 589 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    Xiang, Z.L., Ashhab, S., You, J.Q., Nori, F.: Hybrid quantum circuits: superconducting circuits interacting with other quantum systems. Rev. Mod. Phys. 85, 623 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    Gu, X., Kockum, A.F., Miranowicz, A., Liu, Y.X., Nori, F.: Microwave photonics with superconducting quantum circuits. Phys. Rep. 718–719, 1–102 (2017)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Blais, A., van den Maassen, B.A., Zagoskin, A.M.: Tunable coupling of superconducting qubits. Phys. Rev. Lett. 90, 127901 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    Zhu, S.L., Wang, Z.D., Zanardi, P.: Geometric quantum computation and multiqubit entanglement with superconducting qubits inside a cavity. Phys. Rev. Lett. 94, 100502 (2005)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Feng, W., Wang, P., Ding, X., Xu, L., Li, X.Q.: Generating and stabilizing the Greenberger–Horne–Zeilinger state in circuit QED: joint measurement, Zeno effect, and feedback. Phys. Rev. A 83, 042313 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    Aldana, S., Wang, Y.D., Bruder, C.: Greenberger–Horne–Zeilinger generation protocol for N superconducting transmon qubits capacitively coupled to a quantum bus. Phys. Rev. B 84, 134519 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    Yang, C.P., Su, Q.P., Zheng, S.B., Nori, F.: Entangling superconducting qubits in a multi-cavity system. New J. Phys. 18, 013025 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    Yang, C.P., Su, Q.P., Zheng, S.B., Han, S.: Generating entanglement between microwave photons and qubits in multiple cavities coupled by a superconducting qutrit. Phys. Rev. A 87, 022320 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    Fedorov, A., Steffen, L., Baur, M., da Silva, M.P., Wallraff, A.: Implementation of a Toffoli gate with superconducting circuits. Nature 481, 170 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    Leek, P.J., Filipp, S., Maurer, P., Baur, M., Bianchetti, R., Fink, J.M., Göppl, M., Steffen, L., Wallraff, A.: Using sideband transitions for two-qubit operations in superconducting circuits. Phys. Rev. B 79, 180511(R) (2009)ADSCrossRefGoogle Scholar
  26. 26.
    DiCarlo, L., Chow, J.M., Gambetta, J.M., Bishop, L.S., Johnson, B.R., Schuster, D.I., Majer, J., Blais, A., Frunzio, L., Girvin, S.M., Schoelkopf, R.J.: Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature 460, 240 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    Ansmann, M., Wang, H., Bialczak, R.C., Hofheinz, M., Lucero, E., Neeley, M., O’Connell, A.D., Sank, D., Weides, M., Wenner, J., Cleland, A.N., Martinis, J.M.: Violation of Bell’s inequality in Josephson phase qubits. Nature 461, 504 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    Chow, J.M., DiCarlo, L., Gambetta, J.M., Nunnenkamp, A., Bishop, L.S., Frunzio, L., Devoret, M.H., Girvin, S.M., Schoelkopf, R.J.: Detecting highly entangled states with a joint qubit readout. Phys. Rev. A 81, 062325 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    DiCarlo, L., Reed, M.D., Sun, L., Johnson, B.R., Chow, J.M., Gambetta, J.M., Frunzio, L., Girvin, S.M., Devoret, M.H., Schoelkopf, R.J.: Preparation and measurement of three-qubit entanglement in a superconducting circuit. Nature 467, 574 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    Song, C., et al.: 10-Qubit entanglement and parallel logic operations with a superconducting circuit. arXiv:1703.10302
  31. 31.
    Barends, R., et al.: Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature 508, 500 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    Cirac, J.I., Zoller, P.: Preparation of macroscopic superpositions in many-atom systems. Phys. Rev. A 50, 2799(R) (1994)ADSCrossRefGoogle Scholar
  33. 33.
    Gerry, C.C.: Preparation of multiatom entangled states through dispersive atom-cavity-field interactions. Phys. Rev. A 53, 2857 (1996)ADSCrossRefGoogle Scholar
  34. 34.
    Zheng, S.B.: One-step synthesis of multiatom Greenberger–Horne–Zeilinger states. Phys. Rev. Lett. 87, 230404 (2001)ADSCrossRefGoogle Scholar
  35. 35.
    Zheng, S.B.: Quantum-information processing and multiatom-entanglement engineering with a thermal cavity. Phys. Rev. A 66, 060303 (2002)ADSCrossRefGoogle Scholar
  36. 36.
    Duan, L.M., Kimble, H.: Efficient engineering of multiatom entanglement through single-photon detections. Phys. Rev. Lett. 90, 253601 (2003)ADSCrossRefGoogle Scholar
  37. 37.
    Wang, X., Feng, M., Sanders, B.C.: Multipartite entangled states in coupled quantum dots and cavity QED. Phys. Rev. A 67, 022302 (2003)ADSCrossRefGoogle Scholar
  38. 38.
    Yang, W., Xu, Z., Feng, M., Du, J.: Entanglement of separate nitrogen-vacancy centers coupled to a whispering-gallery mode cavity. New J. Phys. 12, 113039 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    Chen, Q., Yang, W., Feng, M., Du, J.: Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators. Phys. Rev. A 83, 054305 (2011)ADSCrossRefGoogle Scholar
  40. 40.
    Koch, J., et al.: Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007)ADSCrossRefGoogle Scholar
  41. 41.
    Yu, Y., Han, S.: Private communicationGoogle Scholar
  42. 42.
    Neeley, M., et al.: Process tomography of quantum memory in a Josephson-phase qubit coupled to a two-level state. Nat. Phys. 4, 523 (2008)CrossRefGoogle Scholar
  43. 43.
    Zagoskin, A.M., Ashhab, S., Johansson, J.R., Nori, F.: Quantum two-level systems in Josephson junctions as naturally formed qubits. Phys. Rev. Lett. 97, 077001 (2006)ADSCrossRefGoogle Scholar
  44. 44.
    Leek, P.J., et al.: Using sideband transitions for two-qubit operations in superconducting circuits. Phys. Rev. B 79, 180511(R) (2009)ADSCrossRefGoogle Scholar
  45. 45.
    Strand, J.D., et al.: First-order sideband transitions with flux-driven asymmetric transmon qubits. Phys. Rev. B 87, 220505(R) (2013)ADSCrossRefGoogle Scholar
  46. 46.
    Xiang, Z.L., Lü, X.Y., Li, T.F., You, J.Q., Nori, F.: Hybrid quantum circuit consisting of a superconducting flux qubit coupled to a spin ensemble and a transmission-line resonator. Phys. Rev. B 87, 144516 (2013)ADSCrossRefGoogle Scholar
  47. 47.
    Neumann, P., Kolesov, R., Jacques, V., Beck, J., Tisler, J., Batalov, A., Rogers, L., Manson, N.B., Balasubramanian, G., Jelezko, F., Wrachtrup, J.: Excited-state spectroscopy of single NV defects in diamond using optically detected magnetic resonance. New J. Phys. 11, 013017 (2009)ADSCrossRefGoogle Scholar
  48. 48.
    Pradhan, P., Anantram, M.P., Wang, K.L.: Quantum computation by optically coupled steady atoms/quantum-dots inside a quantum electro-dynamic cavity. arXiv:quant-ph/0002006
  49. 49.
    Yang, C.P., Su, Q.P., Zheng, S.B., Nori, F., Han, S.: Entangling two oscillators with arbitrary asymmetric initial states. Phys. Rev. A 95, 052341 (2017)ADSCrossRefGoogle Scholar
  50. 50.
    DiCarlo, L., et al.: Preparation and measurement of three-qubit entanglement in a superconducting circuit. Nature 467, 574 (2010)ADSCrossRefGoogle Scholar
  51. 51.
    Baur, M., Filipp, S., Bianchetti, R., Fink, J.M., Göppl, M., Steffen, L., Leek, P.J., Blais, A., Wallraff, A.: Measurement of Autler–Townes and mollow transitions in a strongly driven superconducting qubit. Phys. Rev. Lett. 102, 243602 (2009)ADSCrossRefGoogle Scholar
  52. 52.
    Rigetti, C., et al.: Superconducting qubit in waveguide cavity with coherence time approaching 0.1 ms. Phys. Rev. B 86, 100506(R) (2012)ADSCrossRefGoogle Scholar
  53. 53.
    Chang, J.B., et al.: Improved superconducting qubit coherence using titanium nitride. Appl. Phys. Lett. 103, 012602 (2013)ADSCrossRefGoogle Scholar
  54. 54.
    Chow, J.M., et al.: Implementing a strand of a scalable fault-tolerant quantum computing fabric. Nat. Commun. 5, 4015 (2014)CrossRefGoogle Scholar
  55. 55.
    Peterer, M.J., et al.: Coherence and decay of higher energy levels of a superconducting transmon qubit. Phys. Rev. Lett. 114, 010501 (2015)ADSCrossRefGoogle Scholar
  56. 56.
    You, J.Q., et al.: Low-decoherence flux qubit. Phys. Rev. B 75, 140515(R) (2007)ADSCrossRefGoogle Scholar
  57. 57.
    Sank, D., et al.: Measurement-induced state transitions in a superconducting qubit: beyond the rotating wave approximation. Phys. Rev. Lett. 117, 190503 (2016)ADSMathSciNetCrossRefGoogle Scholar
  58. 58.
    Chen, W., Bennett, D.A., Patel, V., Lukens, J.E.: Substrate and process dependent losses in superconducting thin film resonators. Supercond. Sci. Technol. 21, 075013 (2008)ADSCrossRefGoogle Scholar
  59. 59.
    Leek, P.J., Baur, M., Fink, J.M., Bianchetti, R., Steffen, L., Filipp, S., Wallraff, A.: Cavity quantum electrodynamics with separate photon storage and qubit readout modes. Phys. Rev. Lett. 104, 100504 (2010)ADSCrossRefGoogle Scholar
  60. 60.
    Yang, C.P., Chu, S.I., Han, S.: Quantum information transfer and entanglement with SQUID qubits in cavity QED: a dark-state scheme with tolerance for nonuniform device parameter. Phys. Rev. Lett. 92, 117902 (2004)ADSCrossRefGoogle Scholar
  61. 61.
    Yang, C.P., Han, S.: n-Qubit-controlled phase gate with superconducting quantum-interference devices coupled to a resonator. Phys. Rev. A 72, 032311 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Xi-Mei Ye
    • 1
  • Zhen-Fei Zheng
    • 2
  • Dao-Ming Lu
    • 1
  • Chui-Ping Yang
    • 3
  1. 1.College of Mechanic and Electronic EngineeringWuyi UniversityWuyishanChina
  2. 2.Department of PhysicsUniversity of Science and Technology of ChinaHeifeiChina
  3. 3.Department of PhysicsHangzhou Normal UniversityHangzhouChina

Personalised recommendations