Quantumness-generating capability of quantum dynamics

Article

Abstract

We study quantumness-generating capability of quantum dynamics, where quantumness refers to the noncommutativity between the initial state and the evolving state. In terms of the commutator of the square roots of the initial state and the evolving state, we define a measure to quantify the quantumness-generating capability of quantum dynamics with respect to initial states. Quantumness-generating capability is absent in classical dynamics and hence is a fundamental characteristic of quantum dynamics. For qubit systems, we present an analytical form for this measure, by virtue of which we analyze several prototypical dynamics such as unitary dynamics, phase damping dynamics, amplitude damping dynamics, and random unitary dynamics (Pauli channels). Necessary and sufficient conditions for the monotonicity of quantumness-generating capability are also identified. Finally, we compare these conditions for the monotonicity of quantumness-generating capability with those for various Markovianities and illustrate that quantumness-generating capability and quantum Markovianity are closely related, although they capture different aspects of quantum dynamics.

Keywords

Quantum dynamics Quantumness Noncommutativity Quantum Markovianity 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China, Grant Nos. 11375259, 11405262, the National Center for Mathematics and Interdisciplinary Sciences, Chinese Academy of Sciences, Grant No. Y029152K51, the Key Laboratory of Random Complex Structures and Data Science, Chinese Academy of Sciences, Grant No. 2008DP173182.

References

  1. 1.
    Dirac, P.A.M.: The physical interpretation of the quantum dynamics. Proc. R. Soc. Lond. 113, 621 (1927)ADSCrossRefMATHGoogle Scholar
  2. 2.
    von Neumann, J.: Mathematische Grundlagen der Quantenmechanik. Springer, Berlin (1932)MATHGoogle Scholar
  3. 3.
    Zanardi, P., Zalka, C., Faoro, L.: Entangling power of quantum evolutions. Phys. Rev. A 62, 030301 (2000)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Cao, X., Li, N., Luo, S.: Decoherent information of quantum operations. Recent Dev. Stoch. Dyn. Stoch. Anal. 8, 23 (2010)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Luo, S., Li, N.: Decoherence and measurement-induced correlations. Phys. Rev. A 84, 052309 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    Luo, S., Fu, S., Li, N.: Decorrelating capabilities of operations with application to decoherence. Phys. Rev. A 82, 052122 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    Wang, L., Yu, C.S.: The roles of a quantum channel on a quantum state. Int. J. Theor. Phys. 53, 715 (2014)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Mani, A., Karimipour, V.: Cohering and decohering power of quantum channels. Phys. Rev. A 92, 032331 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    García-Díaz, M., Egloff, D., Plenio, M.B.: A note on coherence power of N-dimensional unitary operators. Quantum Inf. Comput. 16, 1282 (2016)MathSciNetGoogle Scholar
  10. 10.
    Bu, K., Kumar, A., Zhang, L., Wu, J.: Cohering power of quantum operations. Phys. Lett. A 381, 1670 (2017)ADSMathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Zanardi, P., Styliaris, G., Venuti, C.L.: Coherence-generating power of quantum unitary maps and beyond. Phys. Rev. A 95, 052306 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    Zanardi, P., Styliaris, G., Venuti, C.L.: Measures of coherence-generating power for quantum unital operations. Phys. Rev. A 95, 052307 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-Markovian quantum dynamics. Phys. Rev. Lett. 101, 150402 (2008)ADSMathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Rivas, A., Huelga, S.F., Plenio, M.B.: Entanglement and non-Markovianity of quantum evolutions. Phys. Rev. Lett. 105, 050403 (2010)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Hou, S.C., Yi, X.X., Yu, S.X., Oh, C.H.: Alternative non-Markovianity measure by divisibility of dynamical maps. Phys. Rev. A 83, 062115 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-Markovian behavior of quantum processes in open systems. Phys. Rev. Lett. 103, 210401 (2009)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Rajagopal, A.K., Devi, A.R.U., Rendell, R.W.: Kraus representation of quantum evolution and fidelity as manifestations of Markovian and non-Markovian forms. Phys. Rev. A 82, 042107 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    Lu, X.-M., Wang, X., Sun, C.P.: Quantum Fisher information flow and non-Markovian processes of open systems. Phys. Rev. A 82, 042103 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    Song, H., Luo, S., Hong, Y.: Quantum non-Markovianity based on the Fisher-information matrix. Phys. Rev. A 91, 042110 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    Luo, S., Fu, S., Song, H.: Quantifying non-Markovianity via correlations. Phys. Rev. A 86, 044101 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    Jiang, M., Luo, S.: Comparing quantum Markovianities: distinguishability versus correlations. Phys. Rev. A 88, 034101 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    Li, N., Luo, S., Mao, Y.: Quantifying the quantumness of quantum ensembles. Phys. Rev. A 96, 022132 (2017)ADSCrossRefGoogle Scholar
  23. 23.
    Fuchs, C.A.: Just two nonorthogonal quantum states. arXiv:quant-ph/9810032 (1998)
  24. 24.
    Fuchs, C.A., Sasaki, M.: The quantumness of a set of quantum states. arXiv:quant-ph/0302108 (2003)
  25. 25.
    Fuchs, C.A., Sasaki, M.: Squeezing quantum information through a classical channel: measuring the “quantumness” of a set of quantum states. Quantum Inf. Comput. 3, 377 (2003)MathSciNetMATHGoogle Scholar
  26. 26.
    Horodecki, M., Horodecki, P., Horodecki, R., Piani, M.: Quantumness of ensemble from no-broadcasting principle. Int. J. Quantum Inf. 4, 105 (2006)CrossRefMATHGoogle Scholar
  27. 27.
    Oreshkov, O., Calsamiglia, J.: Distinguishability measures between ensembles of quantum states. Phys. Rev. A 79, 032336 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    Luo, S., Li, N., Cao, X.: Relative entropy between quantum ensembles. Period. Math. Hung. 59, 223 (2009)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Luo, S., Li, N., Sun, W.: How quantum is a quantum ensemble. Quantum Inf. Process. 9, 711 (2010)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Luo, S., Li, N., Fu, S.: Quantumness of quantum ensembles. Theor. Math. Phys. 169, 1724 (2011)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Zhu, X., Pang, S., Wu, S., Liu, Q.: The classicality and quantumness of a quantum ensemble. Phys. Lett. A 375, 1855 (2011)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976)ADSMathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17, 821 (1976)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)MATHGoogle Scholar
  35. 35.
    Pearle, P.: Simple derivation of the Lindblad equation. Eur. J. Phys. 33, 805–822 (2012)CrossRefMATHGoogle Scholar
  36. 36.
    de Vega, I., Alonso, D.: Dynamics of non-Markovian open quantum systems. Rev. Mod. Phys. 89, 015001 (2017)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Diósi, L.: Comment on “Uniqueness of the equation for quantum state vector collapse”. Phys. Rev. Lett. 112, 108901 (2014)ADSCrossRefGoogle Scholar
  38. 38.
    Caiaffa, M., Smirne, A., Bassi, A.: Stochastic unraveling of positive quantum dynamics. Phys. Rev. A 95, 062101 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.RCSDS, Academy of Mathematics and Systems ScienceChinese Academy of SciencesBeijingChina
  2. 2.School of Mathematical SciencesUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations