Advertisement

Quantum Information Processing

, Volume 15, Issue 12, pp 5339–5349 | Cite as

Toward a scalable quantum computing architecture with mixed species ion chains

  • John WrightEmail author
  • Carolyn Auchter
  • Chen-Kuan Chou
  • Richard D. Graham
  • Thomas W. Noel
  • Tomasz Sakrejda
  • Zichao Zhou
  • Boris B. Blinov
Article

Abstract

We report on progress toward implementing mixed ion species quantum information processing for a scalable ion-trap architecture. Mixed species chains may help solve several problems with scaling ion-trap quantum computation to large numbers of qubits. Initial temperature measurements of linear Coulomb crystals containing barium and ytterbium ions indicate that the mass difference does not significantly impede cooling at low ion numbers. Average motional occupation numbers are estimated to be \(\bar{n} \approx 130\) quanta per mode for chains with small numbers of ions, which is within a factor of three of the Doppler limit for barium ions in our trap. We also discuss generation of ion–photon entanglement with barium ions with a fidelity of \(F \ge 0.84\), which is an initial step towards remote ion–ion coupling in a more scalable quantum information architecture. Further, we are working to implement these techniques in surface traps in order to exercise greater control over ion chain ordering and positioning.

Keywords

Ion trapping Sympathetic cooling Mixed species Ion chains Scalable quantum computing architecture 

Notes

Acknowledgments

The authors would like to thank Matthew R. Hoffman, Spencer R. Williams, and Anupriya Jayakumar for useful conversations. We would also like to acknowledge support from the Intelligence Advanced Research Projects Activity through the Multi-Qubit Coherent Operations Program and the National Science Foundation under Grant No. PHY-1067054.

Supplementary material

Supplementary material 1 (mp4 1139 KB)

References

  1. 1.
    Olmschenk, S., Younge, K.C., Moehring, D.L., Matsukevich, D.N., Maunz, P., Monroe, C.: Manipulation and detection of a trapped \(\text{ Yb }^{+}\) hyperfine qubit. Phys. Rev. A 76, 052314 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    Kirchmair, G., Benhelm, J., Zähringer, F., Gerritsma, R., Roos, C.F., Blatt, R.: Deterministic entanglement of ions in thermal states of motion. New J. Phys. 11(2), 023002 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    Hayes, D., Matsukevich, D.N., Maunz, P., Hucul, D., Quraishi, Q., Olmschenk, S., Campbell, W., Mizrahi, J., Senko, C., Monroe, C.: Entanglement of atomic qubits using an optical frequency comb. Phys. Rev. Lett. 104, 140501 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    Monroe, C., Raussendorf, R., Ruthven, A., Brown, K.R., Maunz, P., Duan, L.-M., Kim, J.: Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects. Phys. Rev. A 89, 022317 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    Moehring, D.L., Maunz, P., Olmschenk, S., Younge, K.C., Matsukevich, D.N., Duan, L.-M., Monroe, C.: Entanglement of single-atom quantum bits at a distance. Nature 449(7158), 68–71 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    Luo, L., Hayes, D., Manning, T.A., Matsukevich, D.N., Maunz, P., Olmschenk, S., Sterk, J.D., Monroe, C.: Protocols and techniques for a scalable atom-photon quantum network. Fortschr. Phys. 57(11–12), 1133–1152 (2009)CrossRefzbMATHGoogle Scholar
  7. 7.
    Gurell, J., Biémont, E., Blagoev, K., Fivet, V., Lundin, P., Mannervik, S., Norlin, L.-O., Quinet, P., Rostohar, D., Royen, P., Schef, P.: Laser-probing measurements and calculations of lifetimes of the \(5d^{2}d_{32}\) and \(5d^{2}d_{52}\) metastable levels in \({\rm Ba}ii\). Phys. Rev. A 75, 052506 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    Campbell, W.C., Mizrahi, J., Quraishi, Q., Senko, C., Hayes, D., Hucul, D., Matsukevich, D.N., Maunz, P., Monroe, C.: Ultrafast gates for single atomic qubits. Phys. Rev. Lett. 105, 090502 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    Schlatter, A., Zeller, S.C., Grange, R., Paschotta, R., Keller, U.: Pulse-energy dynamics of passively mode-locked solid-state lasers above the q-switching threshold. J. Opt. Soc. Am. B 21(8), 1469–1478 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    Sun, L., Zhang, L., Yu, H.J., Guo, L., Ma, J.L., Zhang, J., Hou, W., Lin, X.C., Li, J.M.: 880 nm ld pumped passive mode-locked TEM 00 Nd:YVO 4 laser based on SESAM. Laser Phys. Lett. 7(10), 711 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    Shu, G., Vittorini, G., Buikema, A., Nichols, C.S., Volin, C., Stick, D., Brown, K.R.: Heating rates and ion-motion control in a \({\sf Y}\)-junction surface-electrode trap. Phys. Rev. A 89, 062308 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    Wright, K., Amini, J.M., Faircloth, D.L., Volin, C., Doret, S.C., Hayden, H., Pai, C.-S., Landgren, D.W., Denison, D., Killian, T., Slusher, R.E., Harter, A.W.: Reliable transport through a microfabricated X-junction surface-electrode ion trap. New J. Phys. 15(3), 033004 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    Home, J.P., Hanneke, D., Jost, J.D., Leibfried, D., Wineland, D.J.: Normal modes of trapped ions in the presence of anharmonic trap potentials. New J. Phys. 13(7), 073026 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    Allcock, D.T.C., Harty, T.P., Janacek, H.A., Linke, N.M., Ballance, C.J., Steane, A.M., Lucas, D.M., Jarecki Jr, R.L., Habermehl, S.D., Blain, M.G., Stick, D., Moehring, D.L.: Heating rate and electrode charging measurements in a scalable, microfabricated, surface-electrode ion trap. Appl. Phys. B 107(4), 913–919 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    Daniilidis, N., Narayanan, S., Möller, S.A., Clark, R., Lee, T.E., Leek, P.J., Wallraff, A., Schulz, S., Schmidt-Kaler, F., Häffner, H.: Fabrication and heating rate study of microscopic surface electrode ion traps. New J. Phys. 13(1), 013032 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    Graham, R.D., Chen, S.-P., Sakrejda, T., Wright, J., Zhou, Z., Blinov, B.B.: A system for trapping barium ions in a microfabricated surface trap. AIP Adv. 4(5), 057124 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    Auchter, C., Chou, C.-K., Noel, T.W., Blinov, B.B.: Ion-photon entanglement and bell inequality violation with \({}^{138}\text{ Ba }^+\). J. Opt. Soc. Am. B 31(7), 1568–1572 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    Sterk, J.D., Luo, L., Manning, T.A., Maunz, P., Monroe, C.: Photon collection from a trapped ion-cavity system. Phys. Rev. A 85, 062308 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    Clark, C.R., Chou, C.-W., Ellis, R., Jeff Hunker, A., Kemme, S.A., Maunz, P., Tabakov, B., Tigges, C., Stick, D.L.: Characterization of fluorescence collection optics integrated with a microfabricated surface electrode ion trap. Phys. Rev. Appl. 1, 024004 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    Jechow, A., Streed, E.W., Norton, B.G., Petrasiunas, M.J., Kielpinski, D.: Wavelength-scale imaging of trapped ions using a phase fresnel lens. Opt. Lett. 36(8), 1371–1373 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    Shu, G., Chou, C.-K., Kurz, N., Dietrich, M.R., Blinov, B.B.: Efficient fluorescence collection and ion imaging with the “tack” ion trap. J. Opt. Soc. Am. B 28(12), 2865–2870 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of WashingtonSeattleUSA

Personalised recommendations