Advertisement

Public Choice

, Volume 176, Issue 1–2, pp 229–246 | Cite as

Dynamic ideal point estimation for the European Parliament, 1980–2009

  • James Lo
Article
  • 143 Downloads

Abstract

The European Parliament is one of most prominent substantive applications of NOMINATE to the study of roll call voting outside the U.S., yielding tremendous insights into the voting patterns of the world’s most important transnational parliament. However, this body of research cannot facilitate comparisons of ideological shifts over time, because it exclusively employs scaling models that are static. In this paper, I produce dynamic ideal point estimates for the first six European Parliaments from 1980 to 2009 that can be compared over time. These estimates show a significant amount of ideological shifting for some Members of the European Parliament. I explain the measurement strategy, and compare cross-sectional estimates to existing measures as a validity check. I also offer three applications highlighting the types projects that scholars of the European Parliament might wish to use these dynamic measures to study further.

Keywords

Ideal point estimation Variational inference European Parliament Roll call votes 

JEL Classification

C55 D72 

References

  1. Achen, C. H. (1977). Measuring representation: Perils of the correlation coefficient. American Journal of Political Science, 21(4), 805–815.CrossRefGoogle Scholar
  2. Aldrich, J. H. (1995). Why parties? The origin and transformation of political parties in America. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  3. Budge, I., Klingemann, H.-D., Volkens, A., Bara, J., & Tanenbaum, E. (2001). Mapping policy preferences: Estimates for parties, electors, and governments, 1945–1998. Oxford: Oxford University Press.Google Scholar
  4. Carroll, R., Lewis, J. B., Lo, J., Poole, K. T., & Rosenthal, H. (2009a). Comparing nominate and ideal: Points of difference and Monte Carlo tests. Legislative Studies Quarterly, 34(4), 555–591.CrossRefGoogle Scholar
  5. Carroll, R., Lewis, J. B., Lo, J., Poole, K. T., & Rosenthal, H. (2009b). Measuring bias and uncertainty in dw-nominate ideal point estimates via the parametric bootstrap. Political Analysis, 17(3), 261–275.CrossRefGoogle Scholar
  6. Carroll, R., Lewis, J. B., Lo, J., Poole, K. T., & Rosenthal, H. (2013). The structure of utility in spatial models of voting. American Journal of Political Science, 57(4), 1008–1028.Google Scholar
  7. Clinton, J., Jackman, S., & Rivers, D. (2004). The statistical analysis of roll call data. American Political Science Review, 98(02), 355–370.CrossRefGoogle Scholar
  8. Cooper, J., & Brady, D. W. (1981). Institutional context and leadership style: The house from Cannon to Rayburn. American Political Science Review, 75(2), 411–425.CrossRefGoogle Scholar
  9. Cox, G. W., & McCubbins, M. D. (2005). Setting the agenda: Responsible party government in the US house of representatives. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  10. Downs, A. (1957). An economic theory of democracy. New York: Harper and Row.Google Scholar
  11. Epstein, L., Martin, A. D., Quinn, K. M., & Segal, J. A. (2007). Ideological drift among supreme court justices: Who, when, and how important. Northwestern University Law Review, 101, 1483.Google Scholar
  12. Frech, E. (2016). Re-electing meps: The factors determining re-election probabilities. European Union Politics, 17(1), 69–90.CrossRefGoogle Scholar
  13. Han, J.-H. (2007). Analysing roll calls of the european parliament: A Bayesian application. European Union Politics, 8(4), 479–507.CrossRefGoogle Scholar
  14. Hare, C., Armstrong, D. A., Bakker, R., Carroll, R., & Poole, K. T. (2015). Using Bayesian Aldrich–Mckelvey scaling to study citizens’ ideological preferences and perceptions. American Journal of Political Science, 59(3), 759–774.CrossRefGoogle Scholar
  15. Harrison, J., & West, M. (1999). Bayesian forecasting and dynamic models (Vol. 1030). New York City: Springer.Google Scholar
  16. Hix, S. (2001). Legislative behaviour and party competition in the European Parliament: An application of nominate to the EU. JCMS. Journal of Common Market Studies, 39(4), 663–688.CrossRefGoogle Scholar
  17. Hix, S. (2002). Parliamentary behavior with two principals: Preferences, parties, and voting in the European Parliament. American Journal of Political Science, 46(3), 688–698.CrossRefGoogle Scholar
  18. Hix, S. (2004). Electoral institutions and legislative behavior: Explaining voting defection in the European Parliament. World Politics, 56(2), 194–223.CrossRefGoogle Scholar
  19. Hix, S., & Noury, A. (2009). After enlargement: Voting patterns in the sixth European Parliament. Legislative Studies Quarterly, 34(2), 159–174.CrossRefGoogle Scholar
  20. Hix, S., Noury, A., & Roland, G. (2005). Power to the parties: Cohesion and competition in the European Parliament, 1979–2001. British Journal of Political Science, 35(2), 209–234.CrossRefGoogle Scholar
  21. Hix, S., Noury, A., & Roland, G. (2006). Dimensions of politics in the European Parliament. American Journal of Political Science, 50(2), 494–520.CrossRefGoogle Scholar
  22. Hix, S., Noury, A., & Roland, G. (2007). Democratic politics in the European Parliament. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  23. Hix, S., Noury, A., & Roland, G. (2009). Voting patterns and alliance formation in the European Parliament. Philosophical Transactions of the Royal Society B, 364(1518), 821–831.CrossRefGoogle Scholar
  24. Ho, D., & Quinn, K. (2010). Did a switch in time save nine? Journal of Legal Analysis, 2, 69.CrossRefGoogle Scholar
  25. Høyland, B. (2010). Procedural and party effects in European Parliament roll-call votes. European Union Politics, 11(4), 597–613.CrossRefGoogle Scholar
  26. Imai, K., Lo, J., & Olmsted, J. (2016). Fast estimation of ideal points with massive data. American Political Science Review, 110(4), 631–656.CrossRefGoogle Scholar
  27. Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., & Saul, L. K. (1999). An introduction to variational methods for graphical models. Machine Learning, 37(2), 183–233.CrossRefGoogle Scholar
  28. Lo, J. (2013a). An electoral connection in European Parliament voting. Legislative Studies Quarterly, 38(4), 439–460.CrossRefGoogle Scholar
  29. Lo, J. (2013b). Legislative responsiveness to gerrymandering: Evidence from the 2003 Texas redistricting. Quarterly Journal of Political Science, 8(1), 75–92.CrossRefGoogle Scholar
  30. Lo, J., Proksch, S.-O., & Gschwend, T. (2013). A common left–right scale for voters and parties in Europe. Political Analysis, 22(2), 205–223.CrossRefGoogle Scholar
  31. Martin, A. D., & Quinn, K. M. (2002). Dynamic ideal point estimation via Markov chain Monte Carlo for the US supreme court, 1953–1999. Political Analysis, 10(2), 134–153.CrossRefGoogle Scholar
  32. Martin, A. D., & Quinn, K. M. (2007). Assessing preference change on the U.S. supreme court. The Journal of Law, Economics, & Organization, 23(2), 365–385.CrossRefGoogle Scholar
  33. Martin, A. D., Quinn, K. M., & Epstein, L. (2004). The median justice on the United States supreme court. North Carolina Law Review, 83, 1275.Google Scholar
  34. McElroy, G., & Benoit, K. (2010). Party policy and group affiliation in the European Parliament. British Journal of Political Science, 40(02), 377–398.CrossRefGoogle Scholar
  35. McFadden, D. (1973). Frontiers of econometrics. In P. Zarembka (Ed.), Chapter conditional logit analysis of qualitative choice behavior (pp. 105–142). New York: Academic Press.Google Scholar
  36. Noury, A. G. (2002). Ideology, nationality and Euro-Parliamentarians. European Union Politics, 3(1), 33–58.CrossRefGoogle Scholar
  37. Poole, K. (2005). Spatial models of parliamentary voting. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  38. Poole, K. T. (1998). Recovering a basic space from a set of issue scales. American Journal of Political Science, 42(3), 954–993.CrossRefGoogle Scholar
  39. Poole, K. T. (2000). Nonparametric unfolding of binary choice data. Political Analysis, 8(3), 211–237.CrossRefGoogle Scholar
  40. Poole, K. T. (2017). The scientific status of geometric models of choice and similarities judgment. Public Choice, 171(3–4), 245–256.CrossRefGoogle Scholar
  41. Poole, K., & Lewis, J. (2004). Measuring bias and uncertainty in ideal point estimates via the parametric bootstrap. Political Analysis, 12(2), 105–127.CrossRefGoogle Scholar
  42. Poole, K., Lewis, J., Lo, J., & Carroll, R. (2011). Scaling roll call votes with W-nominate in R. Journal of Statistical Software, 42(14), 1–21.CrossRefGoogle Scholar
  43. Poole, K. T., Lewis, J. B., Rosenthal, H., Lo, J., & Carroll, R. (2016). Recovering a basic space from issue scales in r. Journal of Statistical Software, 69(7), 1–21.CrossRefGoogle Scholar
  44. Poole, K. T., & Rosenthal, H. (1985). A spatial model for legislative roll call analysis. American Journal of Political Science, 29(2), 357–384.CrossRefGoogle Scholar
  45. Poole, K., & Rosenthal, H. (1991). Patterns of congressional voting. American Journal of Political Science, 35, 228–278.CrossRefGoogle Scholar
  46. Poole, K., & Rosenthal, H. (1997). Congress: A political-economic history of roll call voting. New York: Oxford University Press.Google Scholar
  47. Poole, K. T., & Rosenthal, H. (2001). D-nominate after 10 years. Legislative Studies Quarterly, 26(1), 5–29.CrossRefGoogle Scholar
  48. Proksch, S.-O., & Lo, J. (2012). Reflections on the European integration dimension. European Union Politics, 13(2), 317–333.CrossRefGoogle Scholar
  49. Rohde, D. W. (2010). Parties and leaders in the postreform house. Chicago: University of Chicago Press.Google Scholar
  50. Schmitt, H., & Wüst, A. M. (2012). Euromanifestos project (emp) 1979–2004. GESIS Data Archive, Cologne. ZA4457 Data file Version 1(0).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Political ScienceUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations