Advertisement

Public Choice

, Volume 176, Issue 1–2, pp 57–78 | Cite as

What Ordered Optimal Classification reveals about ideological structure, cleavages, and polarization in the American mass public

  • Christopher Hare
  • Tzu-Ping Liu
  • Robert N. Lupton
Article

Abstract

This paper develops an extension of Poole’s (Polit Anal 8(3):211–237, 2000) Optimal Classification (OC) scaling procedure to the analysis of polytomous or ordered choice data. This type of data is regularly encountered in public opinion and expert surveys, legislative and judicial bodies where abstention is relevant, and measures of policy that are coded along ordinal scales. OC is nonparametric and requires only minimal assumptions about voters’ utility functions and the error term. As such, Ordered Optimal Classification (OOC) provides a flexible modeling strategy to estimate latent ideological spaces from ordinal choice data. OOC is also easily estimated in multidimensional space without identifying restrictions. After describing the OOC procedure, we perform a series of Monte Carlo experiments and apply the method to analyze survey data from the 2015 Cooperative Congressional Election Study. We then conclude with a discussion of how scholars can utilize OOC in future work involving multidimensional spatial models of choice.

Keywords

Ideal point estimation Ideology Public opinion Optimal Classification 

References

  1. Abramowitz, A. (2010). The disappearing center: Engaged citizens, polarization, and American democracy. New Haven: Yale University Press.Google Scholar
  2. Aldrich, J. H., & McKelvey, R. D. (1977). A method of scaling with applications to the 1968 and 1972 presidential elections. American Political Science Review, 71(1), 111–130.CrossRefGoogle Scholar
  3. Alvarez, R. M. (1997). Information and elections. Ann Arbor: University of Michigan Press.CrossRefGoogle Scholar
  4. Alvarez, R. M., & Brehm, J. (1995). American ambivalence towards abortion policy: Development of a heteroskedastic probit model of competing values. American Journal of Political Science, 39(4), 1055–1082.CrossRefGoogle Scholar
  5. Ansolabehere, S., Rodden, J., & Snyder, J. M, Jr. (2008). The strength of issues: Using multiple measures to gauge preference stability, ideological constraint, and issue voting. American Political Science Review, 102(2), 215–232.CrossRefGoogle Scholar
  6. Bafumi, J., & Shapiro, R. Y. (2009). A new partisan voter. Journal of Politics, 71(1), 1–24.CrossRefGoogle Scholar
  7. Bailey, M. A., Strezhnev, A., & Voeten, E. (2017). Estimating dynamic state preferences from United Nations voting data. Journal of Conflict Resolution, 61(2), 430–456.CrossRefGoogle Scholar
  8. Bakker, R., Vries, Cd, Edwards, E., Hooghe, L., Jolly, S., Marks, G., et al. (2015). Measuring party positions in Europe: The Chapel Hill Expert Survey trend file, 1999–2010. Party Politics, 21(1), 143–152.CrossRefGoogle Scholar
  9. Berinsky, A. J., & Lewis, J. B. (2007). An estimate of risk aversion in the U.S. electorate. Quarterly Journal of Political Science, 2(2), 139–154.CrossRefGoogle Scholar
  10. Bonica, A. (2013). Ideology and interests in the political marketplace. American Journal of Political Science, 57(2), 294–311.CrossRefGoogle Scholar
  11. Bonica, A. (2014). The punctuated origins of Senate polarization. Legislative Studies Quarterly, 39(1), 5–26.CrossRefGoogle Scholar
  12. Bonica, A. (2018). Inferring roll call scores from campaign contributions using supervised machine learning. American Journal of Political Science.  https://doi.org/10.2139/ssrn.2732913.Google Scholar
  13. Brady, H. E. (2011). The art of political science: Spatial diagrams as iconic and revelatory. Perspectives on Politics, 9(2), 311–331.CrossRefGoogle Scholar
  14. Brady, H. E., & Ansolabehere, S. (1989). The nature of utility functions in mass publics. American Political Science Review, 83(1), 143–163.CrossRefGoogle Scholar
  15. Brazill, T. J., & Grofman, B. (2002). Factor analysis versus multi-dimensional scaling: Binary choice roll-call voting and the US Supreme Court. Social Networks, 24(3), 201–229.CrossRefGoogle Scholar
  16. Brewer, P. R. (2003). The shifting foundations of public opinion about gay rights. Journal of Politics, 65(4), 1208–1220.CrossRefGoogle Scholar
  17. Bullock, J. G., Gerber, A. S., Hill, S. J., & Huber, G. A. (2015). Partisan bias in factual beliefs about politics. Quarterly Journal of Political Science, 10(4), 519–578.CrossRefGoogle Scholar
  18. Carroll, R., Lewis, J. B., Lo, J., Poole, K. T., & Rosenthal, H. (2013). The structure of utility in spatial models of voting. American Journal of Political Science, 57(4), 1008–1028.Google Scholar
  19. Clinton, J. D., & Jackman, S. (2009). To simulate or NOMINATE? Legislative Studies Quarterly, 34(4), 593–621.CrossRefGoogle Scholar
  20. Clinton, J., Jackman, S., & Rivers, D. (2004). The statistical analysis of roll call data. American Political Science Review, 98(2), 355–370.CrossRefGoogle Scholar
  21. Converse, P. E. (1964). The nature of belief systems in mass publics. In D. E. Apter (Ed.), Ideology and discontent (pp. 206–261). New York: Free Press.Google Scholar
  22. Coombs, C., & Kao, R. (1960). On a connection between factor analysis and multidimensional unfolding. Psychometrika, 25(3), 219–231.CrossRefGoogle Scholar
  23. Croft, W., & Poole, K. T. (2008). Inferring universals from grammatical variation: Multidimensional scaling for typological analysis. Theoretical Linguistics, 34(1), 1–37.CrossRefGoogle Scholar
  24. Enelow, J. M., & Hinich, M. J. (1984). The spatial theory of voting: An introduction. New York: Cambridge University Press.Google Scholar
  25. Fariss, C. J., & Schnakenberg, K. (2014). Measuring mutual dependence between state repressive actions. Journal of Conflict Resolution, 58(6), 1003–1032.CrossRefGoogle Scholar
  26. Feldman, S. (1988). Structure and consistency in public opinion: The role of core beliefs and values. American Journal of Political Science, 32(2), 416–440.CrossRefGoogle Scholar
  27. Ferwerda, J., Hainmueller, J., & Hazlett, C. J. (2017). Kernel-based regularized least squares in R (KRLS) and Stata (krls). Journal of Statistical Software, 79(3), 1–26.CrossRefGoogle Scholar
  28. Gibson, T., & Hare, C. (2016). Moral epistemology and ideological conflict in American political behavior. Social Science Quarterly, 97(5), 1157–1173.CrossRefGoogle Scholar
  29. Goren, P. (2008). The two faces of government spending. Political Research Quarterly, 61(1), 147–157.CrossRefGoogle Scholar
  30. Groseclose, T. (2001). A model of candidate location when one candidate has a valence advantage. American Journal of Political Science, 45(4), 862–886.CrossRefGoogle Scholar
  31. Hainmueller, J., & Hazlett, C. (2014). Kernel regularized least squares: Reducing misspecification bias with a flexible and interpretable machine learning approach. Political Analysis, 22(2), 143–168.CrossRefGoogle Scholar
  32. Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction (2nd ed.). New York: Springer.CrossRefGoogle Scholar
  33. Hetherington, M. J., & Weiler, J. D. (2009). Authoritarianism and polarization in American politics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  34. Hinich, M. J., & Munger, M. C. (1994). Ideology and the theory of political choice. Ann Arbor: University of Michigan Press.CrossRefGoogle Scholar
  35. Hinich, M. J., & Munger, M. C. (1997). Analytical politics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  36. Hix, S., Noury, A., & Roland, G. (2006). Dimensions of politics in the European Parliament. American Journal of Political Science, 50(2), 494–511.CrossRefGoogle Scholar
  37. Jacoby, W. G. (1985). Inconsistent preferences and the multidimensional unfolding model. Political Methodology, 11(3/4), 201–220.Google Scholar
  38. Jacoby, W. G. (1994). Public attitudes toward government spending. American Journal of Political Science, 38(2), 336–361.CrossRefGoogle Scholar
  39. Jacoby, W. G. (2002). Core values and political attitudes. In B. Norrander & C. Wilcox (Eds.), Understanding public opinion (2nd ed., pp. 177–201). Washington, DC: CQ Press.Google Scholar
  40. Jacoby, W. G. (2006). Value choices and American public opinion. American Journal of Political Science, 50(3), 706–723.CrossRefGoogle Scholar
  41. Jacoby, W. G. (2008). Comment: The dimensionality of public attitudes toward government spending. Political Research Quarterly, 61(1), 158–161.CrossRefGoogle Scholar
  42. Jacoby, W. G. (2014). Is there a culture war? Conflicting value structures in American public opinion. American Political Science Review, 108(4), 754–771.CrossRefGoogle Scholar
  43. Jessee, S. A. (2009). Spatial voting in the 2004 presidential election. American Political Science Review, 103(1), 59–81.CrossRefGoogle Scholar
  44. Jessee, S. A. (2012). Ideology and spatial voting in American elections. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  45. Keele, L., & Wolak, J. (2006). Value conflict and volatility in party identification. British Journal of Political Science, 36(4), 671–690.CrossRefGoogle Scholar
  46. Kellstedt, P. M., Ramirez, M. D., Vedlitz, A., & Zahran, S. (2017). Does political sophistication minimize value conflict? Evidence from a Heteroskedastic graded IRT model of opinions toward climate change. British Journal of Political Science.  https://doi.org/10.1017/S0007123417000369 Google Scholar
  47. Klar, S. (2014). A multidimensional study of ideological preferences and priorities among the American public. Public Opinion Quarterly, 78(S1), 344–359.CrossRefGoogle Scholar
  48. Ladha, K. K. (1991). A spatial model of legislative voting with perceptual error. Public Choice, 68(1–3), 151–174.Google Scholar
  49. Lane, R. (1959). The fear of equality. American Political Science Review, 53(1), 35–51.CrossRefGoogle Scholar
  50. Lauderdale, B. E. (2010). Unpredictable voters in ideal point estimation. Political Analysis, 18(2), 151–171.CrossRefGoogle Scholar
  51. Layman, G. C., & Carsey, T. M. (2002). Party polarization and “conflict extension” in the American electorate. American Journal of Political Science, 46(4), 786–802.CrossRefGoogle Scholar
  52. Layman, G. C., Carsey, T. M., Green, J. C., Herrera, R., & Cooperman, R. (2010). Activists and conflict extension in American party politics. American Political Science Review, 104(2), 324–346.CrossRefGoogle Scholar
  53. Layman, G. C., & Green, J. C. (2006). Wars and rumours of wars: The contexts of cultural conflict in American political behaviour. British Journal of Political Science, 36(1), 61–89.CrossRefGoogle Scholar
  54. Lewis, J. B. (2001). Estimating voter preference distributions from individual-level voting data. Political Analysis, 9(3), 275–297.CrossRefGoogle Scholar
  55. Lupton, R. N., Myers, W. M., & Thornton, J. R. (2015). Political sophistication and the dimensionality of elite and mass attitudes, 1980–2004. Journal of Politics, 77(2), 368–380.CrossRefGoogle Scholar
  56. Lupton, R. N., Smallpage, S. M., & Enders, A. M. (2017). Values and political predispositions in the age of polarization: Examining the relationship between partisanship and ideology in the United States, 1988–2012. British Journal of Political Science.  https://doi.org/10.1017/S0007123417000370 Google Scholar
  57. Martin, A. D., & Quinn, K. M. (2002). Dynamic ideal point estimation via Markov Chain Monte Carlo for the U.S. Supreme Court, 1953–1999. Political Analysis, 10(2), 134–153.CrossRefGoogle Scholar
  58. McClosky, H., & Zaller, J. (1984). The American ethos: Public attitudes toward capitalism and democracy. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
  59. McFadden, D. L. (1976). Quantal choice analaysis: A survey. Annals of Economic and Social Measurement, 5(4), 363–390.Google Scholar
  60. Nunez, S., & Rosenthal, H. (2004). Bankruptcy “reform” in Congress: Creditors, committees, ideology, and floor voting in the legislative process. Journal of Law, Economics, and Organization, 20(2), 527–557.CrossRefGoogle Scholar
  61. Palfrey, T. R., & Poole, K. T. (1987). The relationship between information, ideology, and voting behavior. American Journal of Political Science, 31(3), 511–530.CrossRefGoogle Scholar
  62. Poole, K. T. (1998). Recovering a basic space from a set of issue scales. American Journal of Political Science, 42(3), 954–993.CrossRefGoogle Scholar
  63. Poole, K. T. (2000). Nonparametric unfolding of binary choice data. Political Analysis, 8(3), 211–237.CrossRefGoogle Scholar
  64. Poole, K. T. (2005). Spatial models of parliamentary voting. New York: Cambridge University Press.CrossRefGoogle Scholar
  65. Poole, K. T. (2017). The scientific status of geometric models of choice and similarities judgment. Public Choice, 171(3/4), 245–256.CrossRefGoogle Scholar
  66. Poole, K. T., & Rosenthal, H. (1984). U.S. presidential elections 1968–80: A spatial analysis. American Journal of Political Science, 28(2), 282–312.CrossRefGoogle Scholar
  67. Poole, K. T., & Rosenthal, H. (1997). Congress: A political-economic history of roll call voting. New York: Oxford University Press.Google Scholar
  68. Poole, K. T., & Rosenthal, H. (2007). Ideology and Congress. New Brunswick, NJ: Transaction.Google Scholar
  69. Rathbun, B. C., Kertzer, J. D., Reifler, J., Goren, P., & Scotto, T. J. (2016). Taking foreign policy personally: Personal values and foreign policy attitudes. International Studies Quarterly, 60(1), 124–137.CrossRefGoogle Scholar
  70. Rivers, D. (2003). Identification of multidimensional spatial voting models. Working paper.Google Scholar
  71. Rosenthal, H., & Voeten, E. (2004). Analyzing roll calls with perfect spatial voting: France 1946–1958. American Journal of Political Science, 48(3), 620–632.CrossRefGoogle Scholar
  72. Rosenthal, H., & Voeten, E. (2007). Measuring legal systems. Journal of Comparative Economics, 35(4), 711–728.CrossRefGoogle Scholar
  73. Shepsle, K. A. (1972). The strategy of ambiguity: Uncertainty and electoral competition. American Political Science Review, 66(2), 555–568.CrossRefGoogle Scholar
  74. Silberman, J. I., & Durden, G. C. (1976). Determining legislative preferences on the minimum wage: An economic approach. Journal of Political Economy, 84(2), 317–329.CrossRefGoogle Scholar
  75. Smidt, C. D. (2017). Polarization and the decline of the American floating voter. American Journal of Political Science, 61(2), 365–381.CrossRefGoogle Scholar
  76. Sniderman, P. M., & Bullock, J. (2004). A consistency theory of public opinion and political choice: The hypothesis of menu dependence. In W. E. Saris & P. M. Sniderman (Eds.), Studies in public opinion: Attitudes, nonattitudes, measurement error, and change (pp. 337–357). Princeton, NJ: Princeton University Press.Google Scholar
  77. Sohn, Y. (2017). Identification and estimation for multidimensional item response theory: An analysis of roll call votes in the United States Congress. Presented at the 2017 Annual Meeting of the Annual Political Science Association, San Francisco, CA.Google Scholar
  78. Stimson, J. A. (2004). Tides of consent: How public opinion shapes American politics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  79. Stokes, D. E. (1963). Spatial models of party competition. American Political Science Review, 57(2), 368–377.CrossRefGoogle Scholar
  80. Stone, W. J., & Simas, E. N. (2010). Candidate valence and ideological positions in U.S. House elections. American Journal of Political Science, 54(2), 371–388.CrossRefGoogle Scholar
  81. Tahk, A. (2018). Nonparametric ideal-point estimation and inference. Political Analysis.  https://doi.org/10.1017/pan.2017.38.Google Scholar
  82. Thacker, S. C. (1999). The high politics of IMF lending. World Politics, 52(1), 38–75.CrossRefGoogle Scholar
  83. Treier, S., & Hillygus, D. S. (2009). The nature of political ideology in the contemporary electorate. Public Opinion Quarterly, 73(4), 679–703.CrossRefGoogle Scholar
  84. van Schuur, W. H. (2011). Ordinal item response theory: Mokken Scale analysis. Thousand Oaks, CA: Sage.CrossRefGoogle Scholar
  85. van Schuur, W. H., & Kiers, H. A. (1994). Why factor analysis often is the incorrect model for analyzing bipolar concepts, and what model to use instead. Applied Psychological Measurement, 18(2), 97–110.CrossRefGoogle Scholar
  86. Weisberg, H. F. (1974). Dimensionland: An excursion into spaces. American Journal of Political Science, 18(4), 743–776.CrossRefGoogle Scholar
  87. Weisberg, H. F. (2005). The structure and effects of moral predispositions in contemporary American politics. Journal of Politics, 67(3), 646–668.CrossRefGoogle Scholar
  88. Weisberg, H. F., & Rusk, J. G. (1970). Dimensions of candidate evaluation. American Political Science Review, 64(4), 1167–1185.CrossRefGoogle Scholar
  89. Zaller, J., & Feldman, S. (1992). A simple theory of the survey response: Answering questions versus revealing preferences. American Journal of Political Science, 36(3), 579–616.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Christopher Hare
    • 1
  • Tzu-Ping Liu
    • 1
  • Robert N. Lupton
    • 2
  1. 1.Department of Political ScienceUniversity of California, DavisDavisUSA
  2. 2.Department of Political ScienceUniversity of ConnecticutStorrsUSA

Personalised recommendations