Advertisement

Prevention Science

, Volume 20, Issue 1, pp 68–77 | Cite as

eHealth Familias Unidas: Efficacy Trial of an Evidence-Based Intervention Adapted for Use on the Internet with Hispanic Families

  • Yannine EstradaEmail author
  • Tae Kyoung Lee
  • Rachel Wagstaff
  • Lourdes M. Rojas
  • Maria I. Tapia
  • Maria Rosa Velázquez
  • Krystal Sardinas
  • Hilda Pantin
  • Madeline Y. Sutton
  • Guillermo Prado
Article

Abstract

While substance use and sexual risk behaviors among Hispanic youth continue to be public health concerns, few evidence-based preventive interventions are developed for and implemented with Hispanic/Latino youth. The objective of this study was to evaluate the efficacy of eHealth Familias Unidas, an Internet adaptation of an evidence-based family intervention for Hispanics. A randomized controlled trial design (n = 230) was used to evaluate intervention effects on substance use and condomless sex among a sample of Hispanic eighth graders with behavioral problems. Participants were randomized to eHealth Familias Unidas (n = 113) or prevention as usual (n = 117) and assessed at baseline and 3 and 12 months post baseline. We trained mental health school personnel and community mental health professionals to recruit and deliver the Internet-based intervention with Hispanic families. It was hypothesized that, over time, eHealth Familias Unidas would be more efficacious than prevention as usual in reducing drug use (marijuana, cocaine, inhalants, and other drugs), prescription drug use, cigarette use, alcohol use, and condomless sex and that these changes would be mediated by family functioning. Significant intervention effects were found across time for drug use, prescription drug use, and cigarette use. While eHealth Familias Unidas positively affected family functioning, mediation effects were not found. This study demonstrated that family-based eHealth interventions can be efficacious among Hispanic populations when delivered in community settings.

Keywords

Internet adaptation Drug use prevention Hispanic adolescents 

Notes

Acknowledgments

This study was funded by a grant from the Centers for Disease Control and Prevention, grant U01PS000671 (PI: Yannine Estrada). We would like to express sincere appreciation to all the families who participated in this study. Additionally, thank you for the support from Miami-Dade County Public Schools.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Disclaimer

The findings and conclusions in this manuscript are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

Human Subjects

All participants in this study signed informed consent or assent. The University of Miami’s Human Subject Research Office and Miami-Dade County Public Schools Research Review Committee approved this study. Study activities were carried out according to the ethical standards specified by the 1964 Declaration of Helsinki and its later amendments.

Supplementary material

11121_2018_905_MOESM1_ESM.docx (29 kb)
Figure S1 (DOCX 29kb)
11121_2018_905_MOESM2_ESM.docx (151 kb)
Figure S2 (DOCX 150kb)
11121_2018_905_MOESM3_ESM.docx (31 kb)
Figure S3 (DOCX 30kb)
11121_2018_905_MOESM4_ESM.docx (21 kb)
Table S1 (DOCX 21kb)
11121_2018_905_MOESM5_ESM.docx (17 kb)
Table S2 (DOCX 16kb)
11121_2018_905_MOESM6_ESM.docx (13 kb)
Table S3 (DOCX 12kb)
11121_2018_905_MOESM7_ESM.docx (22 kb)
Table S4 (DOCX 22kb)

References

  1. Aarons, G. A., & Sawitzky, A. C. (2006). Organizational climate partially mediates the effect of culture on work attitudes and staff turnover in mental health services. Administration and Policy in Mental Health Services Research, 33, 289–301.  https://doi.org/10.1007/s10488-006-0039-1.CrossRefGoogle Scholar
  2. Barnes, H., & Olson, D. (1985). Parent-adolescent communication and the circumplex model. Child Development, 56, 438–447.  https://doi.org/10.2307/1129732.CrossRefGoogle Scholar
  3. Baron, R. M., & Kenny, D. A. (1986). The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Psychological Bulletin, 51, 1173–1182.Google Scholar
  4. Bell, S. G., Newcomer, S. F., Bachrach, C., Borawski, E., Jemmott, J. L., Morrison, D., et al. (2007). Challenges in replicating interventions. Journal of Adolescent Health, 40, 514–520.  https://doi.org/10.1016/j.jadohealth.2006.09.005.CrossRefGoogle Scholar
  5. Bennett, G. G., & Glasgow, R. E. (2009). The delivery of public health interventions via the Internet: Actualizing their potential. Annual Review of Public Health, 30, 273–292.  https://doi.org/10.1146/annurev.publhealth.031308.100235.CrossRefGoogle Scholar
  6. Centers for Disease Control and Prevention (2017a). High school YRBS. Retrieved from https://nccd.cdc.gov/youthonline.Google Scholar
  7. Centers for Disease Control and Prevention (2017b). HIV incidence: Estimated annual infections in the U.S., 2008–2014. Overall and by transmission route. CDC Fact sheet. Retrieved from https://www.cdc.gov/nchhstp/newsroom/docs/factsheets/hiv-incidence-fact-sheet_508.pdf.Google Scholar
  8. Cheung, G. W., & Rensvold, R. B. (2002). Evaluating goodness-of-fit indexes for testing measurement invariance. Structural Equation Modeling, 9(2), 233–255.  https://doi.org/10.1207/S15328007SEM0902_5.CrossRefGoogle Scholar
  9. Ellickson, P. L., Tucker, J. S., Klein, D. J., & Saner, H. (2004). Antecedents and outcomes of marijuana use initiation during adolescence. Prevention Medicine, 39, 976–984.  https://doi.org/10.1016/j.ypmed.2004.04.013.CrossRefGoogle Scholar
  10. Estrada, Y., Lee, T. K., Huang, S., Tapia, M. I., Velázquez, M. R., Martínez, M. J., et al. (2017b). Parent-centered prevention of risky behaviors among Hispanic youths in Florida. American Journal of Public Health, 107, 607–613.  https://doi.org/10.2105/AJPH.2017.303653.CrossRefGoogle Scholar
  11. Estrada, Y., Molleda, L., Murray, A., Drumhiller, K., Tapia, M., Sardinas, K., et al. (2017a). eHealth Familias Unidas: An internet adaptation of an evidence-based family intervention to reduce drug use and sexual risk behaviors among Hispanic adolescents. International Journal of Environmental Research and Public Health, 14, E264.  https://doi.org/10.3390/ijerph14030264.CrossRefGoogle Scholar
  12. File, T.&Ryan, C. (2014). Computer and Internet use in the United States: 2013. American Community Survey Reports, ACS-28. Washington, D.C.: U.S. Census Bureau. Retrieved from http://www.census.gov/content/dam/Census/library/publications/2014/acs/acs-28.pdf.Google Scholar
  13. Gillman, M. W., & Hammond, R. A. (2016). Precision treatment and precision prevention, integrating below and above the skin. JAMA Pediatrics, 170, 9–10.  https://doi.org/10.1001/jamapediatrics.2015.2786.
  14. Gladstone, T. G., Marko-Holguin, M., Rothberg, P., Nidetz, J., Diehl, A., DeFrino, D. T., et al. (2015). An internet-based adolescent depression preventive intervention: Study protocol for a randomized controlled trial. Trials, 16, 203.  https://doi.org/10.1186/s13063-015-0705-2.CrossRefGoogle Scholar
  15. Grimm, K. J. (2012). Intercept centering and time coding in latent difference score models. Structural Equation Modeling, 19, 137–151.  https://doi.org/10.1080/10705511.2012.634734.CrossRefGoogle Scholar
  16. Grimm, K. J., & Liu, Y. (2016). Residual structures in growth models with ordinal outcomes. Structural Equation Modeling, 23, 466–475.  https://doi.org/10.1080/10705511.2015.1103192.CrossRefGoogle Scholar
  17. Hudnut-Beumler, J., Po’e, E., & Barkin, S. (2016). The use of social media for health promotion in Hispanic populations: A scoping systematic review. JMIR Public Health and Surveillance, 2(2), e32.  https://doi.org/10.2196/publichealth.5579.CrossRefGoogle Scholar
  18. Ingoldsby, E. M. (2010). Review of interventions to improve family engagement and retention in parent and child mental health programs. Journal of Child and Family Studies, 19, 629–645.  https://doi.org/10.1007/s10826-009-9350-2.CrossRefGoogle Scholar
  19. Jemmott III, J. B., Jemmott, L. S., & Fong, G. T. (1998). Abstinence and safer sex HIV risk-reduction interventions for African American adolescents: A randomized controlled trial. Journal of the American Medical Association, 279, 1529–1536.CrossRefGoogle Scholar
  20. Johnston, L. D., O’Malley, P. M., Miech, R. A., Bachman, J. G., & Schulenberg, J. E. (2017). Monitoring the Future national survey results on drug use, 1975–2016: Overview, key findings on adolescent drug use. Ann Arbor, MI: Institute for Social Research Retrieved from http://www.monitoringthefuture.org//pubs/monographs/mtf-overview2016.pdf.Google Scholar
  21. Kann, L., McManus, T., Harris, W. A., Shanklin, S. L., Flint, K. H., Hawkins, J., et al. (2016). Youth risk behavior surveillance—United States, 2015. Morbidity and Mortality Weekly Report (MMWR), 65, 1–174 Retrieved from https://www.cdc.gov/mmwr/volumes/65/ss/ss6506a1.htm.Google Scholar
  22. Knapp, C., Madden, V., Wang, H., Sloyer, P., & Shenkman, E. (2011). Internet use and eHealth literacy of low-income parents whose children have special health care needs. Journal of Medical Internet Research, 13, e75.  https://doi.org/10.2196/jmir.1697.CrossRefGoogle Scholar
  23. MacDonnell, K. W., & Prinz, R. J. (2016). A review of technology-based youth and family-focused interventions. Clinical Child and Family Psychology Review, 20, 185–200.CrossRefGoogle Scholar
  24. MacKinnon, D. P. (2008). Introduction to statistical mediation analysis. New York, NY: Lawrence Erlbaum.Google Scholar
  25. Marsch, L. A., Grabinski, M. J., Bickel, W. K., Desrosiers, A., Guarino, H., Muehlbach, B., et al. (2011). Computer-assisted HIV prevention for youth with substance use disorders. Substance Use and Misuse, 46(1), 46–56.  https://doi.org/10.3109/10826084.2011.521088.CrossRefGoogle Scholar
  26. Mendez, J. L., Carpenter, J. L., LaForett, D. R., & Cohen, J. S. (2009). Parental engagement and barriers to participation in a community-based preventive intervention. American Journal of Community Psychology, 44, 1–14.  https://doi.org/10.1007/s10464-009-9252-x.CrossRefGoogle Scholar
  27. Metzger, D. S., Koblin, B., Turner, C., Navaline, H., Valenti, F., Holte, S., et al. (2000). Randomized controlled trial of audio computer-assisted self-interviewing: Utility and acceptability in longitudinal studies. American Journal of Epidemiology, 152, 99–106.  https://doi.org/10.1093/aje/152.2.99.CrossRefGoogle Scholar
  28. Mohr, D. C., Burns, M. N., Schueller, S. M., Clarke, G., & Klinkman, M. (2013). Behavioral intervention technologies: Evidence review and recommendations for future research in mental health. General Hospital Psychiatry, 35, 332–338.  https://doi.org/10.1016/j.genhosppsych.2013.03.008.CrossRefGoogle Scholar
  29. Mohr, D. C., Cuijpers, P., & Lehman, K. (2011). Supportive accountability: A model for providing human support to enhance adherence to eHealth interventions. Journal of Medical Internet Research, 13, e30.CrossRefGoogle Scholar
  30. Mokdad, A. H., Marks, J. S., Stroup, D. F., & Gerberding, J. L. (2004). Actual causes of death in the United States, 2000. JAMA, 291, 1238–1245.  https://doi.org/10.1001/jama.291.10.1238.CrossRefGoogle Scholar
  31. Muthén, L. K., & Muthén, B. O. (2002). How to use a Monte Carlo study to decide on sample size and determine power. Structural Equation Modeling, 9, 599–620.  https://doi.org/10.1207/S15328007SEM0904_8.CrossRefGoogle Scholar
  32. Nagler, R. H., Ramanadhan, S., Minsky, S., & Viswanath, K. (2013). Recruitment and retention for community-based eHealth interventions with populations of low socioeconomic position: Strategies and challenges. Journal Community, 63, 201–220.  https://doi.org/10.1111/jcom.12008.CrossRefGoogle Scholar
  33. National Research Council & Institute of Medicine [NRC&IM]. (2009). Implementation and dissemination. Preventing mental, emotional, and behavioral disorders among young people, progress and possibilities (pp. 297–336). Washington, D.C.: The National Academies Press.Google Scholar
  34. Newton, N. C., Andrews, G., Champion, K. E., & Teeson, M. (2014). Universal internet-based prevention for alcohol and cannabis use reduces truancy, psychological distress and moral disengagement: A cluster randomized controlled trial. Preventive Medicine, 65, 109–115.  https://doi.org/10.1016/j.ypmed.2014.05.003.CrossRefGoogle Scholar
  35. Noar, S. M., Black, H. G., & Pierce, L. B. (2009). Efficacy of computer technology-based HIV prevention interventions: A meta-analysis. AIDS, 23, 107–115.  https://doi.org/10.1097/QAD.0b013e32831c5500.CrossRefGoogle Scholar
  36. Olsen, M. K., & Schafer, J. L. (2001). A two-part random-effects model for semicontinuous longitudinal data. Journal of the American Statistical Association, 96, 730–745.CrossRefGoogle Scholar
  37. Pantin, H. (1996). Ecodevelopmental measures of support and conflict for Hispanic youth and families. Miami, FL: University of Miami Miller School of Medicine.Google Scholar
  38. Pantin, H., Coatsworth, J. D., Feaster, D. J., Newman, F. L., Briones, E., Prado, G., Schwartz, S. J., & Szapocznik, J. (2003). Familias Unidas: The efficacy of an intervention to promote parental investment in Hispanic immigrant families. Prevention Science, 4, 189–201.CrossRefGoogle Scholar
  39. Pantin, H., Prado, G., Lopez, B., Huang, S., Tapia, M. I., Schwartz, S. J., et al. (2009). A randomized controlled trial of Familias Unidas for Hispanic adolescents with behavior problems. Psychosomatic Medicine, 71, 987–995.  https://doi.org/10.1097/PSY.0b013e3181bb2913.CrossRefGoogle Scholar
  40. Perrino, T., Estrada, Y., Huang, S., St. George, S., Pantin, H., Cano, M. A., et al. (in press). Predictors of participation in an eHealth, family-based preventive intervention for Hispanic youth. Prevention Science. Advance online publication.  https://doi.org/10.1007/s11121-016-0711-y.
  41. Prado, G., Córdova, D., Huang, S., Estrada, Y., Rosen, A., Bacio, G. A., et al. (2012). The efficacy of Familias Unidas on drug and alcohol outcomes for Hispanic delinquent youth: Main effects and interaction effects by parental stress and social support. Drug and Alcohol Dependence, 125(Supplement 1), S18–S25.  https://doi.org/10.1016/j.drugalcdep.2012.06.011.CrossRefGoogle Scholar
  42. Prado, G., Pantin, H., Briones, E., Schwartz, S., Feaster, D., Huang, S., et al. (2007). A randomized controlled trial of a parent-centered intervention in preventing substance use and HIV risk behaviors in Hispanic adolescents. Journal of Consulting and Clinical Psychology, 75, 914–926.  https://doi.org/10.1037/0022-006X.75.6.914.CrossRefGoogle Scholar
  43. Raykov, T., & Marcoulides, G. A. (2000). A first course in structural equation modeling. Mahwah, NJ: Erlbaum.Google Scholar
  44. Spoth, R., Trudeau, L., Shin, C., Ralston, E., Redmond, C., Greenberg, M., & Feinberg, M. (2013). Longitudinal effects of universal preventive intervention on prescription drug misuse: Three randomized controlled trials with late adolescents and young adults. American Journal of Public Health, 103, 665–672.  https://doi.org/10.1037/a0016029.CrossRefGoogle Scholar
  45. Tolan, P. H., Gorman-Smith, D., Huesmann, L. R., & Zelli, A. (1997). Assessment of family relationship characteristics: A measure to explain risk for antisocial behavior and depression among urban youth. Psychological Assessment, 9, 212–223.  https://doi.org/10.1037/1040-3590.9.3.212.CrossRefGoogle Scholar
  46. Turner, C. F., Ku, L., Rogers, S. M., Lindberg, L. D., Pleck, J. H., & Sonenstein, F. L. (1998). Adolescent sexual behavior, drug use, and violence: Increased reporting with computer survey technology. Science, 280, 867–873.  https://doi.org/10.1126/science.280.5365.867.CrossRefGoogle Scholar
  47. U.S.Census Bureau (2015). Annual estimates of the resident population by sex, age, race, and Hispanic origin for the United States: April 1, 2010 to July 1, 2014. Retrieved from https://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?src=bkmk.Google Scholar
  48. Viswanath, K. (2011). Cyberinfrastructure: An extraordinary opportunity to bridge health and communication inequalities? American Journal of Preventive Medicine, 40(Suppl 2), S245–S248.  https://doi.org/10.1016/j.amepre.2011.02.005.CrossRefGoogle Scholar
  49. Widaman, K. F., Ferrer, E., & Conger, R. D. (2010). Factorial invariance within longitudinal structural equation models: Measuring the same construct across time. Child Development Perspectives, 4, 10–18.  https://doi.org/10.1111/j.1750-8606.2009.00110.x.CrossRefGoogle Scholar
  50. Zayas, L. H., Borrego, J., & Domenech Rodriguez, M. M. (2009). Parenting interventions and Latino families. Research findings, cultural adaptations, and future directions. In F. A. Villarruel, G. Carlo, J. M. Grau, M. Azmitia, N. J. Cabrera, & T. J. Chahin (Eds.), Handbook of U.S. Latino psychology: Developmental and community-based perspectives (pp. 291–307). Thousand Oaks, CA: Sage.Google Scholar

Copyright information

© Society for Prevention Research 2018

Authors and Affiliations

  • Yannine Estrada
    • 1
    Email author
  • Tae Kyoung Lee
    • 1
  • Rachel Wagstaff
    • 1
  • Lourdes M. Rojas
    • 1
  • Maria I. Tapia
    • 1
  • Maria Rosa Velázquez
    • 1
  • Krystal Sardinas
    • 1
  • Hilda Pantin
    • 1
  • Madeline Y. Sutton
    • 2
  • Guillermo Prado
    • 1
  1. 1.Department of Public Health Sciences, Miller School of MedicineUniversity of MiamiMiamiUSA
  2. 2.Division of HIV/AIDS PreventionCenters for Disease Control and PreventionAtlantaUSA

Personalised recommendations