Generating dihydrogen by tethering an [FeFe]hydrogenase via a molecular wire to the A1A/A1B sites of photosystem I

  • Michael Gorka
  • John H. GolbeckEmail author
Original article


Photosystem I complexes from the menB deletion mutant of Synechocystis sp. PCC 6803 were previously wired to a Pt nanoparticle via a molecular wire consisting of 15-(3-methyl-1,4-naphthoquinone-2-yl)]pentadecyl sulfide. In the presence of a sacrificial electron donor and an electron transport mediator, the PS I-NQ(CH2)15S-Pt nanoconstruct generated dihydrogen at a rate of 44.3 µmol of H2 mg Chl−1 h−1 during illumination at pH 8.3. The menB deletion strain contains an interruption in the biosynthetic pathway of phylloquinone, which results in the presence of a displaceable plastoquinone-9 in the A1A/A1B sites. The synthesized quinone contains a headgroup identical to the native phylloquinone along with a 15-carbon long tail that is terminated in a thiol. The thiol on the molecular wire is used to bind the Pt nanoparticle. In this short communication, we replaced the Pt nanoparticle with an [FeFe]H2ase variant from Clostridium acetobutylicum that contains an exposed iron on the distal [4Fe-4S] cluster afforded by mutating the surface exposed Cys97 residue to Gly. The thiol on the molecular wire is then used to coordinate the corner iron atom of the iron–sulfur cluster. When all three components are combined and illuminated in the presence of a sacrificial electron donor and an electron transport mediator, the PS I-NQ(CH2)15S-[FeFe]H2ase nanoconstruct generated dihydrogen at a rate of 50.3 ± 9.96 μmol of H2 mg Chl−1 h−1 during illumination at pH 8.3. This successful in vitro experiment sets the stage for assembling a PS I-NQ(CH2)15S-[FeFe]H2ase nanoconstruct in vivo in the menB mutant of Synechocystis sp. PCC 6803.


Photosystem I [FeFe]hydrogenase menB mutant Dihydrogen generation Electron transfer Phylloquinone 



We would like to acknowledge Dr. Paul King and Dr. Carolyn Lubner (National Renewable Energy Labs) for providing the plasmids used in this study as well as guidance in the expression, purification, and handling of the [FeFe]H2ase enzyme. This work was supported by the US Department of Energy, Office of Science, and Office of Basic Energy Sciences under Award Number DE‐SC0018087.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Applegate AM, Lubner CE, Knorzer P, Happe T, Golbeck JH (2014) Quantum yield measurements of light-induced H generation in a photosystem I-[FeFe]-H ase nanoconstruct. Photosynth Res 127:5–11CrossRefPubMedPubMedCentralGoogle Scholar
  2. Evans BR, O’Neill HM, Hutchens SA, Bruce BD, Greenbaum E (2004) Enhanced photocatalytic hydrogen evolution by covalent attachment of plastocyanin to photosystem I. Nano Lett 4(10):1815–1819CrossRefGoogle Scholar
  3. Golbeck JH (2006) Photosystem I: the light-driven plastocyanin:ferredoxin oxidoreductase. Springer, NetherlandsCrossRefGoogle Scholar
  4. Golbeck JH, Mehari T, Parrett K, Ikegami I (1988) Reconstitution of the photosystem I complex from the P700 and Fx-containing reaction center core protein and the FA/FB polypeptide. FEBS Lett 240(1):9–14CrossRefGoogle Scholar
  5. Gorka M, Schartner J, van der Est A, Rogner M, Golbeck JH (2014) Light-mediated hydrogen generation in photosystem I: attachment of a naphthoquinone-molecular wire-Pt nanoparticle to the A1A and A1B sites. Biochem 53(14):2295–2306CrossRefGoogle Scholar
  6. Gorka M, Perez A, Baker CS, Ferlez B, van der Est A, Bryant DA, Golbeck JH (2015) Electron transfer from the A1A and A1B sites to a tethered Pt nanoparticle requires the FeS clusters for suppression of the recombination channel. J Photochem Photobiol B 152:325–334CrossRefPubMedPubMedCentralGoogle Scholar
  7. Greenbaum E (1985) Platinized chloroplasts: a novel photocatalytic material. Science 230(4732):1373–1375CrossRefPubMedPubMedCentralGoogle Scholar
  8. Greenbaum E (1988) Interfacial photoreactions at the photosynthetic membrane interface: an upper limit for the number of platinum atoms required to form a hydrogen-evolving platinum metal catalyst. J Phys Chem 92(16):4571–4574CrossRefGoogle Scholar
  9. Grimme RA, Lubner CE, Bryant DA, Golbeck JH (2008) Photosystem I/molecular wire/metal nanoparticle bioconjugates for the photocatalytic production of H2. J Am Chem Soc 130(20):6308–6309CrossRefPubMedPubMedCentralGoogle Scholar
  10. Grimme RA, Lubner CE, Golbeck JH (2009) Maximizing H2 production in photosystem I/dithiol molecular wire/platinum nanoparticle bioconjugates. Dalton Trans 45:10106–10113CrossRefGoogle Scholar
  11. Ihara M, Nakamoto H, Kamachi T, Okura I, Maeda M (2006) Photoinduced hydrogen production by direct electron transfer from photosystem I cross-linked with cytochrome c 3 to [NiFe]-hydrogenase. Photochem Photobiol 82(6):1677–1685CrossRefPubMedPubMedCentralGoogle Scholar
  12. Ikegami I, Kato S (1975) Enrichment of photosystem I reaction center chlorophyll from spinach chloroplasts. Biochim Biophys Acta 376(3):588–592CrossRefPubMedPubMedCentralGoogle Scholar
  13. Ikegami I, Sétif P, Mathis P (1987) Absorption studies of photosystem I photochemistry in the absence of vitamin K-1. Biochim Biophys Acta 894(3):414–422CrossRefGoogle Scholar
  14. Ikegami I, Itoh S, Iwaki M (1995) Photoactive Photosystem I particles with a molar ratio of chlorophyll a to P700 of 9. Plant Cell Physiol 36(5):857–864CrossRefGoogle Scholar
  15. Itoh S, Iwaki M, Ikegami I (2001) Modification of photosystem I reaction center by the extraction and exchange of chlorophylls and quinones. Biochim Biophys Acta Bioenergy 1507(1–3):115–138CrossRefGoogle Scholar
  16. Iwaki M, Itoh S (1989) Electron transfer in spinach photosystem I reaction center containing benzo-, naphtho- and anthraquinones in place of phylloquinone. FEBS Lett 256(1–2):11–16CrossRefGoogle Scholar
  17. Johnson TW, Shen G, Zybailov B, Kolling D, Reategui R, Beauparlant S, Vassiliev IR, Bryant DA, Jones AD, Golbeck JH, Chitnis PR (2000) Recruitment of a foreign quinone into the A(1) site of photosystem I. I. Genetic and physiological characterization of phylloquinone biosynthetic pathway mutants in Synechocystis sp. pcc 6803. J Biol Chem 275(12):8523–8530CrossRefPubMedPubMedCentralGoogle Scholar
  18. Johnson TW, Zybailov B, Jones AD, Bittl R, Zech S, Stehlik D, Golbeck JH, Chitnis PR (2001) Recruitment of a foreign quinone into the A1 site of photosystem I. In vivo replacement of plastoquinone-9 by media-supplemented naphthoquinones in phylloquinone biosynthetic pathway mutants of Synechocystis sp. PCC 6803. J Biol Chem 276(43):39512–39521CrossRefPubMedPubMedCentralGoogle Scholar
  19. Kuchenreuther JM, Grady-Smith CS, Bingham AS, George SJ, Cramer SP, Swartz JR (2010) High-yield expression of heterologous [FeFe] hydrogenases in Escherichia coli. PLoS ONE 5(11):e15491CrossRefPubMedPubMedCentralGoogle Scholar
  20. Lee JW, Tevault CV, Blankinship SL, Collins RT, Greenbaum E (1994) Photosynthetic water splitting: in situ photoprecipitation of metallocatalysts for photoevolution of hydrogen and oxygen. Energy Fuels 8(3):770–773CrossRefGoogle Scholar
  21. Lee JW, Lee I, Greenbaum E (2005) Imaging nanometer metallocatalysts formed by photosynthetic deposition of water-soluble transition-metal compounds. J Phys Chem B 109(12):5409–5413CrossRefPubMedPubMedCentralGoogle Scholar
  22. Lubner CE, Grimme R, Bryant DA, Golbeck JH (2010a) Wiring photosystem I for direct solar hydrogen production. Biochem 49(3):404–414CrossRefGoogle Scholar
  23. Lubner CE, Knorzer P, Silva PJ, Vincent KA, Happe T, Bryant DA, Golbeck JH (2010b) Wiring an [FeFe]-hydrogenase with Photosystem I for light-induced hydrogen production. Biochemistry 49(48):10264–10266CrossRefPubMedPubMedCentralGoogle Scholar
  24. Lubner CE, Applegate AM, Knorzer P, Ganago A, Bryant DA, Happe T, Golbeck JH (2011) Solar hydrogen-producing bionanodevice outperforms natural photosynthesis. Proc Natl Acad Sci 108(52):20988–20991CrossRefPubMedPubMedCentralGoogle Scholar
  25. Lubner CE, Bryant DA, Golbeck JH (2012) Chapter 17: Wired reaction centers. In: Molecular solar fuels. The Royal Society of Chemistry, pp 464–505Google Scholar
  26. Makita H, Hastings G (2016a) Modeling electron transfer in photosystem I. Biochim Biophys Acta 1857(6):723–733CrossRefPubMedPubMedCentralGoogle Scholar
  27. Makita H, Hastings G (2016b) Time-resolved visible and infrared absorption spectroscopy data obtained using photosystem I particles with non-native quinones incorporated into the A1 binding site. Data Brief 7:1463–1468CrossRefPubMedPubMedCentralGoogle Scholar
  28. Makita H, Hastings G (2017) Inverted-region electron transfer as a mechanism for enhancing photosynthetic solar energy conversion efficiency. Proc Natl Acad Sci 114(35):9267–9272CrossRefPubMedPubMedCentralGoogle Scholar
  29. Millsaps JF, Bruce BD, Lee JW, Greenbaum E (2001) Nanoscale photosynthesis: photocatalytic production of hydrogen by platinized photosystem I reaction centers. Photochem Photobiol 73(6):630–635CrossRefPubMedPubMedCentralGoogle Scholar
  30. Morra S, Giraudo A, Di Nardo G, King PW, Gilardi G, Valetti F (2012) Site saturation mutagenesis demonstrates a central role for cysteine 298 as proton donor to the catalytic site in CaHydA [FeFe]-hydrogenase. PLoS ONE 7(10):e48400CrossRefPubMedPubMedCentralGoogle Scholar
  31. Mula S, Savitsky A, Mobius K, Lubitz W, Golbeck JH, Mamedov MD, Semenov AY, van der Est A (2012) Incorporation of a high potential quinone reveals that electron transfer in photosystem I becomes highly asymmetric at low temperature. Photochem Photobiol Sci 11(6):946–956CrossRefPubMedPubMedCentralGoogle Scholar
  32. Nagakawa H, Takeuchi A, Takekuma Y, Noji T, Kawakami K, Kamiya N, Nango M, Furukawa R, Nagata M (2019) Efficient hydrogen production using photosystem I enhanced by artificial light harvesting dye. Photochem Photobiol Sci 18(2):309–313CrossRefPubMedPubMedCentralGoogle Scholar
  33. Parrett KG, Mehari T, Warren PG, Golbeck JH (1989) Purification and properties of the intact P-700 and Fx-containing photosystem I core protein. Biochim Biophys Acta 973(2):324–332CrossRefPubMedPubMedCentralGoogle Scholar
  34. Ptushenko VV, Cherepanov DA, Krishtalik LI, Semenov AY (2008) Semi-continuum electrostatic calculations of redox potentials in Photosystem I. Photosynth Res 97(1):55–74CrossRefPubMedPubMedCentralGoogle Scholar
  35. Rogner M, Nixon PJ, Diner BA (1990) Purification and characterization of photosystem I and photosystem II core complexes from wild-type and phycocyanin-deficient strains of the cyanobacterium Synechocystis PCC 6803. J Biol Chem 265(11):6189–6196PubMedPubMedCentralGoogle Scholar
  36. Semenov AY, Vassiliev IR, van Der Est A, Mamedov MD, Zybailov B, Shen G, Stehlik D, Diner BA, Chitnis PR, Golbeck JH (2000) Recruitment of a foreign quinone into the A1 site of photosystem I. Altered kinetics of electron transfer in phylloquinone biosynthetic pathway mutants studied by time-resolved optical, EPR, and electrometric techniques. J Biol Chem 275(31):23429–23438CrossRefPubMedPubMedCentralGoogle Scholar
  37. Shinkarev V (2006) Functional modeling of electron transfer in photosynthetic reaction centers. In: Golbeck J (ed) Photosystem I, vol 24. Advances in photosynthesis and respiration. Springer, Netherlands, pp 611–637CrossRefGoogle Scholar
  38. Shinkarev VP, Zybailov B, Vassiliev IR, Golbeck JH (2002) Modeling of the P700 + charge recombination kinetics with phylloquinone and plastoquinone-9 in the A1 site of photosystem I. Biophys J 83(6):2885–2897CrossRefPubMedPubMedCentralGoogle Scholar
  39. Silver SC, Niklas J, Du P, Poluektov OG, Tiede DM, Utschig LM (2013) Protein delivery of a Ni catalyst to photosystem I for light-driven hydrogen production. J Am Chem Soc 135(36):13246–13249CrossRefPubMedPubMedCentralGoogle Scholar
  40. Srinivasan N, Golbeck JH (2009) Protein-cofactor interactions in bioenergetic complexes: the role of the A1A and A1B phylloquinones in photosystem I. Biochim Biophys Acta 1787(9):1057–1088CrossRefPubMedPubMedCentralGoogle Scholar
  41. Tapia C, Milton R, Pankratova G, Minteer S, Åkerlund H-E, Leech D, Lacey A, Pita M, Gorton L (2016) Wiring of photosystem I and hydrogenase on an electrode for photoelectrochemical H2 production using redox polymers for relatively positive onset potential. ChemElectroChem 4(1):90–95CrossRefGoogle Scholar
  42. Terasaki N, Yamamoto N, Tamada K, Hattori M, Hiraga T, Tohri A, Sato I, Iwai M, Iwai M, Taguchi S, Enami I, Inoue Y, Yamanoi Y, Yonezawa T, Mizuno K, Murata M, Nishihara H, Yoneyama S, Minakata M, Ohmori T, Sakai M, Fujii M (2007) Bio-photosensor: cyanobacterial photosystem I coupled with transistor via molecular wire. Biochim Biophys Acta, Bioenerg 1767(6):653–659CrossRefGoogle Scholar
  43. Terasaki N, Yamamoto N, Hiraga T, Yamanoi Y, Yonezawa T, Nishihara H, Ohmori T, Sakai M, Fujii M, Tohri A, Iwai M, Inoue Y, Yoneyama S, Minakata M, Enami I (2009) Plugging a molecular wire into photosystem I: reconstitution of the photoelectric conversion system on a gold electrode. Angew Chem Int Ed Engl 48(9):1585–1587CrossRefPubMedPubMedCentralGoogle Scholar
  44. Utschig LM, Dimitrijevic NM, Poluektov OG, Chemerisov SD, Mulfort KL, Tiede DM (2011a) Photocatalytic hydrogen production from noncovalent biohybrid Photosystem I/Pt nanoparticle complexes. J Phys Chem Lett 2(3):236–241CrossRefGoogle Scholar
  45. Utschig LM, Silver SC, Mulfort KL, Tiede DM (2011b) Nature-driven photochemistry for catalytic solar hydrogen production: a Photosystem I-transition metal catalyst hybrid. J Am Chem Soc 133(41):16334–16337CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular BiologyThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Department of ChemistryThe Pennsylvania State UniversityUniversity ParkUSA
  3. 3.Department of Biochemistry and Molecular BiologyThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations