Advertisement

Cationic penetrating antioxidants switch off Mn cluster of photosystem II in situ

  • Vasily V. PtushenkoEmail author
  • Alexei E. Solovchenko
  • Andrew Y. Bychkov
  • Olga B. Chivkunova
  • Andrey V. Golovin
  • Olga A. Gorelova
  • Tatiana T. Ismagulova
  • Leonid V. Kulik
  • Elena S. Lobakova
  • Alexandr A. Lukyanov
  • Rima I. Samoilova
  • Pavel N. Scherbakov
  • Irina O. Selyakh
  • Larisa R. Semenova
  • Svetlana G. Vasilieva
  • Olga I. Baulina
  • Maxim V. Skulachev
  • Mikhail P. Kirpichnikov
Original article

Abstract

Mitochondria-targeted antioxidants (also known as ‘Skulachev Ions’ electrophoretically accumulated by mitochondria) exert anti-ageing and ROS-protecting effects well documented in animal and human cells. However, their effects on chloroplast in photosynthetic cells and corresponding mechanisms are scarcely known. For the first time, we describe a dramatic quenching effect of (10-(6-plastoquinonyl)decyl triphenylphosphonium (SkQ1) on chlorophyll fluorescence, apparently mediated by redox interaction of SkQ1 with Mn cluster in Photosystem II (PSII) of chlorophyte microalga Chlorella vulgaris and disabling the oxygen-evolving complex (OEC). Microalgal cells displayed a vigorous uptake of SkQ1 which internal concentration built up to a very high level. Using optical and EPR spectroscopy, as well as electron donors and in silico molecular simulation techniques, we found that SkQ1 molecule can interact with Mn atoms of the OEC in PSII. This stops water splitting giving rise to potent quencher(s), e.g. oxidized reaction centre of PSII. Other components of the photosynthetic apparatus proved to be mostly intact. This effect of the Skulachev ions might help to develop in vivo models of photosynthetic cells with impaired OEC function but essentially intact otherwise. The observed phenomenon suggests that SkQ1 can be applied to study stress-induced damages to OEC in photosynthetic organisms.

Keywords

Chlorophyll fluorescence quenching Oxygen-evolving complex P680+ accumulation Photosystem II Skulachev ions YZ 

Abbreviations

CF

Chlorophyll fluorescence

DPC

Diphenylcarbazide

ESE

Electron spin echo

NPQ

Non-photochemical quenching

OEC

Oxygen-evolving complex

P680 and P700

Primary electron donors in photosystems II and I, respectively

PSII

Photosystem II

ROS

Reactive oxygen species

SkQ1

10-(6-Plastoquinonyl)decyl triphenylphosphonium

Notes

Acknowledgements

The electron microscopy study was carried out at the User Facilities Center of M.V. Lomonosov Moscow State University. The authors are grateful to Dr. T.V. Zhigalova for help in chloroplast isolation; to Dr. N.P. Isaev and Dr. I.A. Slepneva for help in experiments; to Dr. M.V. Fedin and Dr. K.L. Ivanov for help with the sample logistics; to Dr. E. Reijerse and Dr. W. Lubitz for providing the opportunity to perform Q-band EPR experiments and helpful discussion; to Dr. G.A. Korshunova for generous donation of SkQ1 and SkQ3; to Dr. S. Matsubara and Dr. C. Schreiber for the possibility of Imaging PAM measurements, to Dr. F. Mamedov and Dr. T.K. Antal for inspiring discussions; to Dr. I.I. Proskuryakov for reading the manuscript and critical remarks, and to Dr. V.P. Skulachev for friendly criticism, encouragement, and invaluable suggestions. Funding by Russian Foundation for Basic Research is gratefully acknowledged (Project 19-04-00509). The publication was prepared with partial support of the « RUDN University Program 5–100 » .

Author contribution

Conception of the study and writing up the manuscript—VVP and AES; algae cultivation and experimental treatments—OIB, OAG, TTI, AAL, ESL, PNS, IOS, LRS, and SGV; synthesis of SkQ1 and SkQ3—MVS; instrumental measurements: fluorimetry—VVP and AES; pigment assay and spectral measurements—VVP, AES, and OBC; photosynthetic oxygen evolution—VVP and AES; chloroplast isolation—OBC; Mn assay—AYB; EPR measurements—LVK, RIS, and VVP; docking simulation—AVG; thermodynamic and kinetic analysis and Fo vs. Fm quenching simulation—VVP; discussion and interpretation of the results—all authors.

Compliance with ethical standards

Competing interests

MVS is CEO of Mitotech LLC; all other authors declare that they have no conflict of interest.

Supplementary material

11120_2019_657_MOESM1_ESM.doc (2.9 mb)
Supplementary material 1 (DOC 2929 kb)
11120_2019_657_MOESM2_ESM.doc (66 kb)
Supplementary material 2 (DOC 65 kb)
11120_2019_657_MOESM3_ESM.pdf (2.5 mb)
Supplementary material 3 (PDF 2513 kb)

References

  1. Antonenko YN, Avetisyan A, Bakeeva L, Chernyak B, Chertkov V, Domnina L, Ivanova OY, Izyumov D, Khailova L, Klishin S (2008) Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 1. Cationic plastoquinone derivatives: synthesis and in vitro studies. Biochem Mosc 73(12):1273–1287Google Scholar
  2. Barber J (2004) Water, water everywhere, and its remarkable chemistry. Biochim Biophys Acta Bioenerg 1655:123–132Google Scholar
  3. Bukhov N, Heber U, Wiese C, Shuvalov V (2001) Energy dissipation in photosynthesis: does the quenching of chlorophyll fluorescence originate from antenna complexes of photosystem II or from the reaction center? Planta 212(5):749–758Google Scholar
  4. Bukhov NG, Sridharan G, Egorova EA, Carpentier R (2003) Interaction of exogenous quinones with membranes of higher plant chloroplasts: modulation of quinone capacities as photochemical and non-photochemical quenchers of energy in Photosystem II during light–dark transitions. Biochim Biophys Acta Bioenerg 1604(2):115–123Google Scholar
  5. Butler WL (1972) On the primary nature of fluorescence yield changes associated with photosynthesis. Proc Natl Acad Sci 69(11):3420–3422Google Scholar
  6. Calatayud A, Deltoro VI, Barreno E, Valle-Tascon Sd (1997) Changes in in vivo chlorophyll fluorescence quenching in lichen thalli as a function of water content and suggestion of zeaxanthin-associated photoprotection. Physiol Plant 101(1):93–102Google Scholar
  7. Demmig-Adams B, Koh S-C, Cohu CM, Muller O, Stewart JJ, Adams WW (2014) Non-photochemical fluorescence quenching in contrasting plant species and environments. In: Demmig-Adams B, Garab G, Adams III W, Govindjee (eds) Non-photochemical quenching and energy dissipation in plants, algae and cyanobacteria. Springer, Dordrecht, pp 531–552Google Scholar
  8. Dolgikh YI, Stepanova AY, Trusova S, Chichkova N, Vartapetian A (2013) Mitochondria-targeted antioxidant provides for enhanced morphogenetic potential in plant tissue cultures. Russ J Plant Physiol 60(5):706–712Google Scholar
  9. Dzyubinskaya E, Ionenko I, Kiselevsky D, Samuilov V, Samuilov F (2013) Mitochondria-addressed cations decelerate the leaf senescence and death in Arabidopsis thaliana and increase the vegetative period and improve crop structure of the wheat Triticum aestivum. Biochem Mosc 78(1):68–74Google Scholar
  10. Flores M, Okamura MY, Niklas J, Pandelia M-E, Lubitz W (2012) Pulse Q-band EPR and ENDOR spectroscopies of the photochemically generated monoprotonated benzosemiquinone radical in frozen alcoholic solution. J Phys Chem B 116(30):8890–8900Google Scholar
  11. Foresi N, Correa-Aragunde N, Parisi G, Caló G, Salerno G, Lamattina L (2010) Characterization of a nitric oxide synthase from the plant kingdom: NO generation from the green alga Ostreococcus tauri is light irradiance and growth phase dependent. Plant Cell 22(11):3816–3830Google Scholar
  12. Green DE (1974) The electromechanical model for energy coupling in mitochondria. Biochim Biophys Acta Rev Bioenerg 346(1):27–78Google Scholar
  13. Hauska G, Hurt E, Gabellini N, Lockau W (1983) Comparative aspects of quinol-cytochrome c/plastocyanin oxidoreductases. Biochim Biophys Acta Rev Bioenerg 726(2):97–133Google Scholar
  14. Heber U, Bilger W, Türk R, Lange OL (2010) Photoprotection of reaction centres in photosynthetic organisms: mechanisms of thermal energy dissipation in desiccated thalli of the lichen Lobaria pulmonaria. New Phytol 185(2):459–470Google Scholar
  15. Horton P (2014) Developments in research on non-photochemical fluorescence quenching: emergence of key ideas, theories and experimental approaches. In: Demmig-Adams B, Garab G, Adams III W, Govindjee (eds) Non-photochemical quenching and energy dissipation in plants, algae and cyanobacteria, vol 40. Advances in photosynthesis and respiration. Springer, Netherlands, pp 73–95.  https://doi.org/10.1007/978-94-017-9032-1_3 Google Scholar
  16. Hunter JD (2007) Matplotlib: a 2D graphics environment. Comput Sci Eng 9(3):90–95Google Scholar
  17. Käss H, Fromme P, Witt HT, Lubitz W (2001) Orientation and electronic structure of the primary donor radical cation in photosystem I: a single crystals EPR and ENDOR study. J Phys Chem B 105(6):1225–1239Google Scholar
  18. Krasnovsky A, Evstigneev V (1948) Quenching of magnesium phatallocyanine and chlorophyll fluorescence by non-native molecules (in Russian). Dokl Akad Nauk USSR 60(4):623–626Google Scholar
  19. Krieger A, Rutherford AW, Johnson GN (1995) On the determination of redox midpoint potential of the primary quinone electron acceptor, QA, in Photosystem II. Biochim Biophys Acta Bioenerg 1229(2):193–201.  https://doi.org/10.1016/0005-2728(95)00002-Z Google Scholar
  20. Lazár D (2014) Parameters of photosynthetic energy partitioning. J Plant Physiol 175:131–147Google Scholar
  21. Levich VG, Dogonadze RR (1959) Theory of non-radiation electron transitions from ion to ion in solutions (in Russian). Dokl Akad Nauk SSSR 124(1):123–126Google Scholar
  22. Ley AC, Mauzerall DC (1982) Absolute absorption cross-sections for photosystem II and the minimum quantum requirement for photosynthesis in Chlorella vulgaris. Biochim Biophys Acta Bioenerg 680(1):95–106Google Scholar
  23. Liang Y, Sarkany N, Cui Y (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotech Lett 31(7):1043–1049Google Scholar
  24. Liberman E, Topaly V, Tsofina L, Jasaitis A, Skulachev V (1969) Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria. Nature 222(5198):1076Google Scholar
  25. Livingston R, Ke C-L (1950) Quenching of the fluorescence of chlorophyll a solutions1. J Am Chem Soc 72(2):909–915Google Scholar
  26. Mamedov F, Sayre RT, Styring S (1998) Involvement of histidine 190 on the D1 protein in electron/proton transfer reactions on the donor side of photosystem II. Biochemistry 37(40):14245–14256Google Scholar
  27. Marcus RA (1956) On the theory of oxidation-reduction reactions involving electron transfer. I. J Chem Phys 24(5):966–978Google Scholar
  28. Marcus RA, Sutin N (1985) Electron transfers in chemistry and biology. Biochim Biophys Acta Rev Bioenerg 811(3):265–322Google Scholar
  29. Maxwell DP, Falk S, Trick CG, Huner NP (1994) Growth at low temperature mimics high-light acclimation in Chlorella vulgaris. Plant Physiol 105(2):535–543Google Scholar
  30. Merzlyak M, Chivkunova O, Zhigalova T, Naqvi K (2009) Light absorption by isolated chloroplasts and leaves: effects of scattering and ‘packing’. Photosynth Res 102(1):31–41Google Scholar
  31. Moser CC, Dutton PL (1992) Engineering protein structure for electron transfer function in photosynthetic reaction centers. Biochim Biophys Acta Bioenerg 1101(2):171–176Google Scholar
  32. Mubarakshina MM, Ivanov BN (2010) The production and scavenging of reactive oxygen species in the plastoquinone pool of chloroplast thylakoid membranes. Physiol Plant 140(2):103–110Google Scholar
  33. Murray JW, Barber J (2007) Structural characteristics of channels and pathways in photosystem II including the identification of an oxygen channel. J Struct Biol 159(2):228–237Google Scholar
  34. Norris J, Uphaus R, Crespi H, Katz J (1971) Electron spin resonance of chlorophyll and the origin of signal I in photosynthesis. Proc Natl Acad Sci 68(3):625–628Google Scholar
  35. Page CC, Moser CC, Chen X, Dutton PL (1999) Natural engineering principles of electron tunnelling in biological oxidation–reduction. Nature 402(6757):47Google Scholar
  36. Paschenko V, Churin A, Gorokhov V, Grishanova N, Korvatovskii B, Maksimov E, Mamedov M (2016) The efficiency of non-photochemical fluorescence quenching by cation radicals in photosystem II reaction centers. Photosynth Res 130(1–3):325–333Google Scholar
  37. Petit PX (1992) Flow cytometric analysis of rhodamine 123 fluorescence during modulation of the membrane potential in plant mitochondria. Plant Physiol 98(1):279–286Google Scholar
  38. Popova YA, Bychkov AY, Matveeva S (2016) Behavior of lanthanides during the formation of the Svetloe deposit, Chukotka. Geochem Int 54(8):732–738Google Scholar
  39. Prisner TF, McDermott AE, Un S, Norris JR, Thurnauer MC, Griffin RG (1993) Measurement of the g-tensor of the P700 + signal from deuterated cyanobacterial photosystem I particles. Proc Natl Acad Sci 90(20):9485–9488Google Scholar
  40. Proctor MC (2003) Comparative ecophysiological measurements on the light responses, water relations and desiccation tolerance of the filmy ferns Hymenophyllum wilsonii Hook. and H. tunbrigense (L.) Smith. Ann Bot 91(6):717–727Google Scholar
  41. Ptushenko VV, Krishtalik LI (2018) Reorganization energies of the electron transfer reactions involving quinones in the reaction center of Rhodobacter sphaeroides. Photosynth Res 138(2):167–175Google Scholar
  42. Ptushenko VV, Ptushenko EA, Samoilova OP, Tikhonov AN (2013) Chlorophyll fluorescence in the leaves of Tradescantia species of different ecological groups: induction events at different intensities of actinic light. Biosystems 114(2):85–97Google Scholar
  43. Ptushenko VV, Cherepanov DA, Krishtalik LI (2015) Electrostatics of the photosynthetic bacterial reaction center. Protonation of Glu L 212 and Asp L 213—a new method of calculation. Biochim Biophys Acta Bioenerg 1847(12):1495–1508Google Scholar
  44. Rappaport F, Diner BA (2008) Primary photochemistry and energetics leading to the oxidation of the (Mn)4Ca cluster and to the evolution of molecular oxygen in Photosystem II. Coord Chem Rev 252(3–4):259–272Google Scholar
  45. Reijerse E, Lendzian F, Isaacson R, Lubitz W (2012) A tunable general purpose Q-band resonator for CW and pulse EPR/ENDOR experiments with large sample access and optical excitation. J Magn Reson 214:237–243Google Scholar
  46. Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111(1):1–61Google Scholar
  47. Ruban AV (2016) Non-photochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protection against photodamage. Plant Physiol.  https://doi.org/10.1104/pp.15.01935 Google Scholar
  48. Samuilov V, Kiselevsky D (2015) Effect of cationic plastoquinone SkQ1 on electron transfer reactions in chloroplasts and mitochondria from pea seedlings. Biochemistry 80(4):417Google Scholar
  49. Samuilov VD, Kiselevsky DB, Oleskin AV (2018) Mitochondria-targeted quinones suppress the generation of reactive oxygen species, programmed cell death and senescence in plants. Mitochondrion.  https://doi.org/10.1016/j.mito.2018.04.008 Google Scholar
  50. Schuurmans JJ, Casey RP, Kraayenhof R (1978) Transmembrane electrical potential formation in spinach chloroplasts: investigation using a rapidly-responding extrinsic probe. FEBS Lett 94(2):405–409Google Scholar
  51. Schweitzer RH, Brudvig GW (1997) Fluorescence quenching by chlorophyll cations in photosystem II. Biochemistry 36(38):11351–11359Google Scholar
  52. Shinkarev VP, Govindjee (1993) Insight into the relationship of chlorophyll a fluorescence yield to the concentration of its natural quenchers in oxygenic photosynthesis. Proc Natl Acad Sci 90(16):7466–7469Google Scholar
  53. Siders P, Marcus RA (1981) Quantum effects for electron-transfer reactions in the” inverted region”. J Am Chem Soc 103(4):748–752Google Scholar
  54. Siegbahn PE (2013) Water oxidation mechanism in photosystem II, including oxidations, proton release pathways, O-O bond formation and O2 release. Biochim Biophys Acta Bioenerg 1827(8–9):1003–1019Google Scholar
  55. Skulachev VP, Antonenko YN, Cherepanov DA, Chernyak BV, Izyumov DS, Khailova LS, Klishin SS, Korshunova GA, Lyamzaev KG, Pletjushkina OY, Roginsky VA, Rokitskaya TI, Severin FF, Severina II, Simonyan RA, Skulachev MV, Sumbatyan NV, Sukhanova EI, Tashlitsky VN, Trendeleva TA, Vyssokikh MY, Zvyagilskaya RA (2010) Prevention of cardiolipin oxidation and fatty acid cycling as two antioxidant mechanisms of cationic derivatives of plastoquinone (SkQs). Biochim Biophys Acta Bioenerg 1797(6–7):878–889Google Scholar
  56. Skulachev MV, Antonenko YN, Anisimov VN, Chernyak BV, Cherepanov DA, Chistyakov VA, Egorov MV, Kolosova NG, Korshunova GA, Lyamzaev KG, Plotnikov EY, Roginsky VA, Savchenko AY, Severina II, Severin FF, Shkurat TP, Tashlitsky VN, Shidlovsky KM, Vyssokikh MY, Zamyatnin AA, Zorov DB, Skulachev VP (2011) Mitochondrial-targeted plastoquinone derivatives. Effect on senescence and acute age-related pathologies. Curr Drug Targets 12(6):800–826Google Scholar
  57. Skulachev VP, Bogachev AV, Kasparinsky FO (2012) Principles of bioenergetics. Springer Science & Business Media, New YorkGoogle Scholar
  58. Solovchenko A, Merzlyak M, Khozin-Goldberg I, Cohen Z, Boussiba S (2010) Coordinated carotenoid and lipid syntheses induced in Parietochloris incisa (Chlorophyta, Trebouxiophyceae) mutant deficient in Δ5 desaturase by nitrogen starvation and high light. J Phycol 46(4):763–772.  https://doi.org/10.1111/j.1529-8817.2010.00849.x Google Scholar
  59. Tamura N, Inoue H, Inoue Y (1990) Inactivation of the water-oxidizing complex by exogenous reductants in PS II membranes depleted of extrinsic proteins. Plant Cell Physiol 31(4):469–477.  https://doi.org/10.1093/oxfordjournals.pcp.a077934 Google Scholar
  60. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461Google Scholar
  61. Witt HT (1991) Functional mechanism of water splitting photosynthesis. Photosynth Res 29(2):55–77Google Scholar
  62. Wiwczar JM, LaFountain AM, Wang J, Frank HA, Brudvig GW (2017) Chlorophyll a with a farnesyl tail in thermophilic cyanobacteria. Photosynth Res 134(2):175–182Google Scholar
  63. Wójcikowski M, Zielenkiewicz P, Siedlecki P (2015) Open Drug Discovery Toolkit (ODDT): a new open-source player in the drug discovery field. J Cheminf 7(1):26Google Scholar
  64. Yadav DK, Prasad A, Kruk J, Pospíšil P (2014) Evidence for the involvement of loosely bound plastosemiquinones in superoxide anion radical production in photosystem II. PLoS ONE 9(12):e115466Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Vasily V. Ptushenko
    • 1
    • 2
    Email author
  • Alexei E. Solovchenko
    • 3
    • 4
  • Andrew Y. Bychkov
    • 5
  • Olga B. Chivkunova
    • 3
  • Andrey V. Golovin
    • 6
    • 7
  • Olga A. Gorelova
    • 3
  • Tatiana T. Ismagulova
    • 3
  • Leonid V. Kulik
    • 8
    • 9
  • Elena S. Lobakova
    • 3
  • Alexandr A. Lukyanov
    • 3
  • Rima I. Samoilova
    • 8
  • Pavel N. Scherbakov
    • 3
  • Irina O. Selyakh
    • 3
  • Larisa R. Semenova
    • 3
  • Svetlana G. Vasilieva
    • 3
  • Olga I. Baulina
    • 3
  • Maxim V. Skulachev
    • 1
    • 10
  • Mikhail P. Kirpichnikov
    • 3
  1. 1.A.N. Belozersky Institute of Physical–Chemical BiologyM.V. Lomonosov Moscow State UniversityMoscowRussia
  2. 2.N.M. Emanuel Institute of Biochemical Physics of RASMoscowRussia
  3. 3.Faculty of BiologyM.V. Lomonosov Moscow State UniversityMoscowRussia
  4. 4.Peoples Friendship University of Russia (RUDN University)MoscowRussia
  5. 5.Faculty of GeologyM.V. Lomonosov Moscow State UniversityMoscowRussia
  6. 6.Faculty of Bioengineering and BioinformaticsM.V. Lomonosov Moscow State UniversityMoscowRussia
  7. 7.Institute of Molecular MedicineSechenov First Moscow State Medical UniversityMoscowRussia
  8. 8.V.V. Voevodsky Institute of Chemical Kinetics and Combustion of SB RASNovosibirskRussia
  9. 9.Novosibirsk State UniversityNovosibirskRussia
  10. 10.Institute of MitoengineeringM.V. Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations