Cryptic chlorophyll breakdown in non-senescent green Arabidopsis thaliana leaves

  • Iris Süssenbacher
  • Damian Menghini
  • Gerhard Scherzer
  • Kathrin Salinger
  • Theresia Erhart
  • Simone Moser
  • Clemens Vergeiner
  • Stefan HörtensteinerEmail author
  • Bernhard KräutlerEmail author
Original article


Chlorophyll (Chl) breakdown is a diagnostic visual process of leaf senescence, which furnishes phyllobilins (PBs) by the PAO/phyllobilin pathway. As Chl breakdown disables photosynthesis, it appears to have no role in photoactive green leaves. Here, colorless PBs were detected in green, non-senescent leaves of Arabidopsis thaliana. The PBs from the green leaves had structures entirely consistent with the PAO/phyllobilin pathway and the mutation of a single Chl catabolic enzyme completely abolished PBs with the particular modification. Hence, the PAO/phyllobilin pathway was active in the absence of visible senescence and expression of genes encoding Chl catabolic enzymes was observed in green Arabidopsis leaves. PBs accumulated to only sub-% amounts compared to the Chls present in the green leaves, excluding a substantial contribution of Chl breakdown from rapid Chl turnover associated with photosystem II repair. Indeed, Chl turnover was shown to involve a Chl a dephytylation and Chl a reconstitution cycle. However, non-recyclable pheophytin a is also liberated in the course of photosystem II repair, and is proposed here to be scavenged and degraded to the observed PBs. Hence, a cryptic form of the established pathway of Chl breakdown is indicated to play a constitutive role in photoactive leaves.


Chlorophyll breakdown Chlorophyll turnover PAO/phyllobilin pathway Pheophytin Phyllobilin Photosystem II repair 



This work was supported by Austrian Science Fund (FWF, Project P-28522 to B.K.) and the Swiss National Foundation (Project 31003A_172977 to S.H.).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11120_2019_649_MOESM1_ESM.docx (1.6 mb)
Supplementary material 1 (DOCX 1669 kb)


  1. Abbas M et al (2018) Auxin methylation is required for differential growth in Arabidopsis. Proc Natl Acad Sci USA 115:6864–6869. CrossRefGoogle Scholar
  2. Aro EM, McCaffery S, Anderson JM (1993) Photoinhibition and D1 protein degradation in peas acclimated to different growth irradiances. Plant Physiol 103:835–843CrossRefGoogle Scholar
  3. Baerenfaller K et al (2012) Systems-based analysis of Arabidopsis leaf growth reveals adaptation to water deficit. Mol Syst Biol 8:606. CrossRefGoogle Scholar
  4. Beisel KG, Jahnke S, Hofmann D, Köppchen S, Schurr U, Matsubara S (2010) Continuous turnover of carotenes and chlorophyll a in mature leaves of Arabidopsis revealed by 14CO2 pulse-chase labeling. Plant Physiol 152:2188–2199. CrossRefGoogle Scholar
  5. Bläsing OE et al (2005) Sugars and circadian regulation make major contributions to the global regulation of diurnal gene expression in Arabidopsis. Plant Cell 17:3257–3281. CrossRefGoogle Scholar
  6. Breeze E et al (2011) High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. Plant Cell 23:873–894. CrossRefGoogle Scholar
  7. Burgie ES, Vierstra RD (2014) Phytochromes: an atomic perspective on photoactivation and signaling. Plant Cell 26:4568–4583. CrossRefGoogle Scholar
  8. Chen Y, Shimoda Y, Yokono M, Ito H, Tanaka A (2019) Mg-dechelatase is involved in the formation of photosystem II but not in chlorophyll degradation in Chlamydomonas reinhardtii. Plant J 97:1022–1031. CrossRefGoogle Scholar
  9. Chew AG, Bryant DA (2007) Chlorophyll biosynthesis in bacteria: the origins of structural and functional diversity. Annu Rev Microbiol 61:113–129. CrossRefGoogle Scholar
  10. Christ B, Schelbert S, Aubry S, Süssenbacher I, Müller T, Kräutler B, Hörtensteiner S (2012) MES16, a member of the methylesterase protein family, specifically demethylates fluorescent chlorophyll catabolites during chlorophyll breakdown in Arabidopsis. Plant Physiol 158:628–641. CrossRefGoogle Scholar
  11. Christ B et al (2013) Cytochrome P450 CYP89A9 is involved in the formation of major chlorophyll catabolites during leaf senescence in Arabidopsis. Plant Cell 25:1868–1880. CrossRefGoogle Scholar
  12. Christ B, Egert A, Süssenbacher I, Kräutler B, Bartels D, Peters S, Hörtensteiner S (2014) Water deficit induces chlorophyll degradation via the ‘PAO/phyllobilin’ pathway in leaves of homoio- (Craterostigma pumilum) and poikilochlorophyllous (Xerophyta viscosa) resurrection plants. Plant Cell Environ 37:2521–2531CrossRefGoogle Scholar
  13. Christ B, Hauenstein M, Hörtensteiner S (2016) A liquid chromatography-mass spectrometry platform for the analysis of phyllobilins, the major degradation products of chlorophyll in Arabidopsis thaliana. Plant J 88:505–518. CrossRefGoogle Scholar
  14. Curty C, Engel N (1996) Detection, isolation and structure elucidation of a chlorophyll a catabolite from autumnal senescent leaves of Cercidiphyllum japonicum. Phytochemistry 42:1531–1536. CrossRefGoogle Scholar
  15. Donnelly PM, Bonetta D, Tsukaya H, Dengler RE, Dengler NG (1999) Cell cycling and cell enlargement in developing leaves of Arabidopsis. Dev Biol 215:407–419. CrossRefGoogle Scholar
  16. Erhart T et al (2016) Chlorophyll catabolites in senescent leaves of the plum tree (Prunus domestica). Chem Biodivers 13:1441–1453. CrossRefGoogle Scholar
  17. Erhart T et al (2018) Novel types of hypermodified fluorescent phyllobilins from breakdown of chlorophyll in senescent leaves of grapevine (Vitis vinifera). Chemistry 24:17268–17279. CrossRefGoogle Scholar
  18. Falk H (1989) Chemistry of linear oligopyrroles and bile pigments. Springer, WienCrossRefGoogle Scholar
  19. Farmer E, Mousavi S, Lenglet A (2013) Leaf numbering for experiments on long distance signalling in Arabidopsis. Protoc Exch 2:89. Google Scholar
  20. Feierabend J, Dehne S (1996) Fate of the porphyrin cofactors during the light-dependent turnover of catalase and of the photosystem II reaction-center protein D1 in mature rye leaves. Planta 198:413–422. CrossRefGoogle Scholar
  21. Gray J, Wardzala E, Yang M, Reinbothe S, Haller S, Pauli F (2004) A small family of LLS1-related non-heme oxygenases in plants with an origin amongst oxygenic photosynthesizers. Plant Mol Biol 54:39–54. CrossRefGoogle Scholar
  22. Grumbach KH, Lichtenthaler HK, Erismann KH (1978) Incorporation of 14CO2 in photosynthetic pigments of Chlorella pyrenoidosa. Planta 140:37–43. CrossRefGoogle Scholar
  23. Hauenstein M, Christ B, Das A, Aubry S, Hörtensteiner S (2016) A role for TIC55 as a hydroxylase of phyllobilins, the products of chlorophyll breakdown during plant senescence. Plant Cell 28:2510–2527. CrossRefGoogle Scholar
  24. Helfrich M, Schoch S, Lempert U, Cmiel E, Rüdiger W (1994) Chlorophyll synthetase cannot synthesize chlorophyll a. Eur J Biochem 219:267–275CrossRefGoogle Scholar
  25. Heyes DJ, Hunter CN (2008) Biosynthesis of chlorophyll and bacteriochlorophyll. In: Warren MJ, Smith AG (eds) Tetrapyrroles: birth, life and death. Landes Bioscience, Austin, pp 233–247Google Scholar
  26. Horie Y, Ito H, Kusaba M, Tanaka R, Tanaka A (2009) Participation of chlorophyll b reductase in the initial step of the degradation of light-harvesting chlorophyll a/b-protein complexes in Arabidopsis. J Biol Chem 284:17449–17456. CrossRefGoogle Scholar
  27. Hörtensteiner S (2009) Stay-green regulates chlorophyll and chlorophyll-binding protein degradation during senescence. Trends Plant Sci 14:155–162. CrossRefGoogle Scholar
  28. Hörtensteiner S (2013) Update on the biochemistry of chlorophyll breakdown. Plant Mol Biol 82:505–517. CrossRefGoogle Scholar
  29. Hörtensteiner S, Kräutler B (2011) Chlorophyll breakdown in higher plants. Biochim Biophys Acta 1807:977–988. CrossRefGoogle Scholar
  30. Hörtensteiner S, Vicentini F, Matile P (1995) Chlorophyll breakdown in senescent cotyledons of rape, Brassica napus L.: enzymatic cleavage of phaeophorbide a in vitro. New Phytol 129:237–246. CrossRefGoogle Scholar
  31. Karg CA, Wang P, Vollmar AM, Moser S (2019) Re-opening the stage for Echinacea research - Characterization of phylloxanthobilins as a novel anti-oxidative compound class in Echinacea purpurea. Phytomedicine. Google Scholar
  32. Komenda J, Sobotka R, Nixon PJ (2012) Assembling and maintaining the photosystem II complex in chloroplasts and cyanobacteria. Curr Opin Plant Biol 15:245–251. CrossRefGoogle Scholar
  33. Kräutler B (2014) Phyllobilins—the abundant bilin-type tetrapyrrolic catabolites of the green plant pigment chlorophyll. Chem Soc Rev 43:6227–6238. CrossRefGoogle Scholar
  34. Kräutler B (2016) Breakdown of chlorophyll in higher plants—phyllobilins as abundant, yet hardly visible signs of ripening, senescence, and cell death. Angew Chem Int Ed 55:4882–4907. CrossRefGoogle Scholar
  35. Kräutler B, Hörtensteiner S (2014) Chlorophyll breakdown: chemistry, biochemistry and biology. In: Ferreira GC, Kadish KM, Smith KM, Guilard R (eds) Handbook of porphyrin science—chlorophyll, photosynthesis and bio-inspired energy, vol 28. Handbook of porphyrin science, vol 28. World Scientific Publishing, Singapore, pp 117–185.
  36. Kräutler B, Mühlecker W, Anderl M, Gerlach B (1997) Breakdown of chlorophyll: partial synthesis of a putative intermediary catabolite. Helv Chim Acta 80:1355–1362. CrossRefGoogle Scholar
  37. Kuai B, Chen J, Hörtensteiner S (2018) The biochemistry and molecular biology of chlorophyll breakdown. J Exp Bot 69:751–767. CrossRefGoogle Scholar
  38. Kusaba M et al (2007) Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence. Plant Cell 19:1362–1375. CrossRefGoogle Scholar
  39. Kusaba M, Tanaka A, Tanaka R (2013) Stay-green plants: what do they tell us about the molecular mechanism of leaf senescence. Photosynth Res 117:221–234. CrossRefGoogle Scholar
  40. Li HM, Pu H (2016) Crystal structure of methylesterase family member 16 (MES16) from Arabidopsis thaliana. Biochem Biophys Res Commun 474:226–231. CrossRefGoogle Scholar
  41. Li C, Erhart T, Liu X, Kräutler B (2019) Yellow dioxobilin-type tetrapyrroles from chlorophyll breakdown in higher plants—a new class of colored phyllobilins. Chemistry. Google Scholar
  42. Lim PO, Kim HJ, Nam HG (2007) Leaf senescence. Annu Rev Plant Biol 58:115–136. CrossRefGoogle Scholar
  43. Lin YP, Lee TY, Tanaka A, Charng YY (2014) Analysis of an Arabidopsis heat-sensitive mutant reveals that chlorophyll synthase is involved in reutilization of chlorophyllide during chlorophyll turnover. Plant J 80:14–26. CrossRefGoogle Scholar
  44. Lin YP, Wu MC, Charng YY (2016) Identification of a chlorophyll dephytylase involved in chlorophyll turnover in Arabidopsis. Plant Cell 28:2974–2990. CrossRefGoogle Scholar
  45. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔ CT method. Methods 25:402–408. CrossRefGoogle Scholar
  46. Matile P, Hörtensteiner S, Thomas H (1999) Chlorophyll degradation. Annu Rev Plant Physiol Plant Mol Biol 50:67–95. CrossRefGoogle Scholar
  47. Meguro M, Ito H, Takabayashi A, Tanaka R, Tanaka A (2011) Identification of the 7-hydroxymethyl chlorophyll a reductase of the chlorophyll cycle in Arabidopsis. Plant Cell 23:3442–3453. CrossRefGoogle Scholar
  48. Miao Y, Zentgraf U (2007) The antagonist function of Arabidopsis WRKY53 and ESR/ESP in leaf senescence is modulated by the jasmonic and salicylic acid equilibrium. Plant Cell 19:819–830. CrossRefGoogle Scholar
  49. Mittelberger C et al (2017) Pathogen-induced leaf chlorosis: products of chlorophyll breakdown found in degreened leaves of Phytoplasma-infected apple (Malus x domestica Borkh.) and spricot (Prunus armeniaca L.) trees relate to the pheophorbide a oxygenase/phyllobilin pathway. J Agric Food Chem 65:2651–2660. CrossRefGoogle Scholar
  50. Mochizuki N et al (2010) The cell biology of tetrapyrroles: a life and death struggle. Trends Plant Sci 15:488–498. CrossRefGoogle Scholar
  51. Mühlecker W, Kräutler B (1996) Breakdown of chlorophyll: constitution of nonfluorescing chlorophyll-catabolites from senescent cotyledons of the dicot rape. Plant Physiol Biochem 34:61–75Google Scholar
  52. Mühlecker W, Ongania K-H, Kräutler B, Matile P, Hörtensteiner S (1997) Tracking down chlorophyll breakdown in plants: elucidation of the constitution of a ‘fluorescent’ chlorophyll catabolite. Angew Chem Int Ed Engl 36:401–404. CrossRefGoogle Scholar
  53. Nickelsen J, Rengstl B (2013) Photosystem II assembly: from cyanobacteria to plants. Annu Rev Plant Biol 64:609–635. CrossRefGoogle Scholar
  54. Oberhuber M, Berghold J, Breuker K, Hörtensteiner S, Kräutler B (2003) Breakdown of chlorophyll: a nonenzymatic reaction accounts for the formation of the colorless “nonfluorescent” chlorophyll catabolites. Proc Natl Acad Sci USA 100:6910–6915. CrossRefGoogle Scholar
  55. Oberhuber M, Berghold J, Kräutler B (2008) Chlorophyll breakdown by a biomimetic route. Angew Chem Int Ed 47:3057–3061. CrossRefGoogle Scholar
  56. Ougham H, Hörtensteiner S, Armstead I, Donnison I, King I, Thomas H, Mur L (2008) The control of chlorophyll catabolism and the status of yellowing as a biomarker of leaf senescence. Plant Biol 10(Suppl. 1):4–14. CrossRefGoogle Scholar
  57. Perkins HJ, Roberts DWA (1963) On chlorophyll turnover in monocotyledons and dicotyledons. Can J Bot 41:221–226CrossRefGoogle Scholar
  58. Pružinská A, Anders I, Tanner G, Roca M, Hörtensteiner S (2003) Chlorophyll breakdown: pheophorbide a oxygenase is a Rieske-type iron-sulfur protein, encoded by the accelerated cell death 1 gene. Proc Natl Acad Sci USA 100:15259–15264. CrossRefGoogle Scholar
  59. Pružinská A et al (2005) Chlorophyll breakdown in senescent Arabidopsis leaves: characterization of chlorophyll catabolites and of chlorophyll catabolic enzymes involved in the degreening reaction. Plant Physiol 139:52–63. CrossRefGoogle Scholar
  60. Ren G et al (2007) Identification of a novel chloroplast protein AtNYE1 regulating chlorophyll degradation during leaf senescence in Arabidopsis. Plant Physiol 144:1429–1441. CrossRefGoogle Scholar
  61. Riper DM, Owens TG, Falkowsky PG (1979) Chlorophyll turnover in Skeletonema costatum, a marine plankton Diatom. Plant Physiol 64:49–54CrossRefGoogle Scholar
  62. Rodoni S et al (1997) Chlorophyll breakdown in senescent chloroplasts. Cleavage of pheophorbide a in two enzymic steps. Plant Physiol 115:669–676. CrossRefGoogle Scholar
  63. Saga Y, Tamiaki H (2012) Demetalation of chlorophyll pigments. Chem Biodivers 9:1659–1683. CrossRefGoogle Scholar
  64. Sakuraba Y, Park SY, Kim YS, Wang SH, Yoo SC, Hörtensteiner S, Paek NC (2014) Arabidopsis STAY-GREEN2 is a negative regulator of chlorophyll degradation during leaf senescence. Mol Plant 7:1288–1302. CrossRefGoogle Scholar
  65. Schelbert S, Aubry S, Burla B, Agne B, Kessler F, Krupinska K, Hörtensteiner S (2009) Pheophytin pheophorbide hydrolase (pheophytinase) is involved in chlorophyll breakdown during leaf senescence in Arabidopsis. Plant Cell 21:767–785. CrossRefGoogle Scholar
  66. Scherl M, Müller T, Kreutz CR, Huber RG, Zass E, Liedl KR, Kräutler B (2016) Chlorophyll catabolites in fall leaves of the wych elm tree present a novel glyosylation motif. Chemistry 22:9498–9503. CrossRefGoogle Scholar
  67. Scheumann V, Schoch S, Rüdiger W (1999) Chlorophyll b reduction during senescence of barley seedlings. Planta 209:364–370CrossRefGoogle Scholar
  68. Shimoda Y, Ito H, Tanaka A (2012) Conversion of chlorophyll b to chlorophyll a precedes magnesium dechelation for protection against necrosis in Arabidopsis. Plant J 72:501–511. CrossRefGoogle Scholar
  69. Shimoda Y, Ito H, Tanaka A (2016) Arabidopsis STAY-GREEN, Mendel’s green cotyledon gene, encodes magnesium-dechelatase. Plant Cell 28:2147–2160. CrossRefGoogle Scholar
  70. Strain HH, Cope BT, Svec WA (1971) Analytical procedures for the isolation, identification, estimation and investigation of the chlorophylls. Methods Enzymol 23:452–476. CrossRefGoogle Scholar
  71. Süssenbacher I, Christ B, Hörtensteiner S, Kräutler B (2014) Hydroxymethylated phyllobilins: a puzzling new feature of the dioxobilin branch of chlorophyll breakdown. Chemistry 20:87–92. CrossRefGoogle Scholar
  72. Süssenbacher I, Hörtensteiner S, Kräutler B (2015a) A dioxobilin-type fluorescent chlorophyll catabolite as a transient early intermediate of the dioxobilin-branch of chlorophyll breakdown in Arabidopsis thaliana. Angew Chem Int Ed 54:13777–13781. CrossRefGoogle Scholar
  73. Süssenbacher I, Kreutz C, Christ B, Hörtensteiner S, Kräutler B (2015b) Hydroxymethylated dioxobilins in senescent Arabidopsis thaliana leaves—sign of a puzzling biosynthetic intermezzo of chlorophyll breakdown. Chemistry 21:11664–11670. CrossRefGoogle Scholar
  74. Tanaka R, Kobayashi K, Masuda T (2011) Tetrapyrrole metabolism in Arabidopsis thaliana. Arabidopsis Book 9:e0145. CrossRefGoogle Scholar
  75. Theis J, Schroda M (2016) Revisiting the photosystem II repair cycle. Plant Signal Behav 11:e1218587. CrossRefGoogle Scholar
  76. Thomas H, Huang L, Young M, Ougham H (2009) Evolution of plant senescence. BMC Evol Biol 9:163. CrossRefGoogle Scholar
  77. Vass I, Cser K (2009) Janus-faced charge recombinations in photosystem II photoinhibition. Trends Plant Sci 14:200–205. CrossRefGoogle Scholar
  78. Vavilin D, Vermaas W (2007) Continuous chlorophyll degradation accompanied by chlorophyllide and phytol reutilization for chlorophyll synthesis in Synechocystis sp. PCC 6803. Biochim Biophys Acta 1767:920–929. CrossRefGoogle Scholar
  79. Vergeiner C, Banala S, Kräutler B (2013) Chlorophyll breakdown in senescent banana leaves: catabolism reprogrammed for biosynthesis of persistent blue fluorescent tetrapyrroles. Chemistry 19:12294–12305. CrossRefGoogle Scholar
  80. Wu S et al (2016) NON-YELLOWING2 (NYE2), a close paralog of NYE1, plays a positive role in chlorophyll degradation in Arabidopsis. Mol Plant 9:624–627. CrossRefGoogle Scholar
  81. Wüthrich KL, Bovet L, Hunziker PE, Donnison IS, Hörtensteiner S (2000) Molecular cloning, functional expression and characterisation of RCC reductase involved in chlorophyll catabolism. Plant J 21:189–198. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institute of Organic Chemistry and Centre of Molecular BiosciencesUniversity of InnsbruckInnsbruckAustria
  2. 2.Institute of Plant and Microbial BiologyUniversity of ZürichZurichSwitzerland

Personalised recommendations