Advertisement

Cryptic chlorophyll breakdown in non-senescent green Arabidopsis thaliana leaves

  • Iris Süssenbacher
  • Damian Menghini
  • Gerhard Scherzer
  • Kathrin Salinger
  • Theresia Erhart
  • Simone Moser
  • Clemens Vergeiner
  • Stefan HörtensteinerEmail author
  • Bernhard KräutlerEmail author
Original article
  • 76 Downloads

Abstract

Chlorophyll (Chl) breakdown is a diagnostic visual process of leaf senescence, which furnishes phyllobilins (PBs) by the PAO/phyllobilin pathway. As Chl breakdown disables photosynthesis, it appears to have no role in photoactive green leaves. Here, colorless PBs were detected in green, non-senescent leaves of Arabidopsis thaliana. The PBs from the green leaves had structures entirely consistent with the PAO/phyllobilin pathway and the mutation of a single Chl catabolic enzyme completely abolished PBs with the particular modification. Hence, the PAO/phyllobilin pathway was active in the absence of visible senescence and expression of genes encoding Chl catabolic enzymes was observed in green Arabidopsis leaves. PBs accumulated to only sub-% amounts compared to the Chls present in the green leaves, excluding a substantial contribution of Chl breakdown from rapid Chl turnover associated with photosystem II repair. Indeed, Chl turnover was shown to involve a Chl a dephytylation and Chl a reconstitution cycle. However, non-recyclable pheophytin a is also liberated in the course of photosystem II repair, and is proposed here to be scavenged and degraded to the observed PBs. Hence, a cryptic form of the established pathway of Chl breakdown is indicated to play a constitutive role in photoactive leaves.

Keywords

Chlorophyll breakdown Chlorophyll turnover PAO/phyllobilin pathway Pheophytin Phyllobilin Photosystem II repair 

Notes

Acknowledgements

This work was supported by Austrian Science Fund (FWF, Project P-28522 to B.K.) and the Swiss National Foundation (Project 31003A_172977 to S.H.).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11120_2019_649_MOESM1_ESM.docx (1.6 mb)
Supplementary material 1 (DOCX 1669 kb)

References

  1. Abbas M et al (2018) Auxin methylation is required for differential growth in Arabidopsis. Proc Natl Acad Sci USA 115:6864–6869.  https://doi.org/10.1073/pnas.1806565115 CrossRefGoogle Scholar
  2. Aro EM, McCaffery S, Anderson JM (1993) Photoinhibition and D1 protein degradation in peas acclimated to different growth irradiances. Plant Physiol 103:835–843CrossRefGoogle Scholar
  3. Baerenfaller K et al (2012) Systems-based analysis of Arabidopsis leaf growth reveals adaptation to water deficit. Mol Syst Biol 8:606.  https://doi.org/10.1038/msb.2012.39 CrossRefGoogle Scholar
  4. Beisel KG, Jahnke S, Hofmann D, Köppchen S, Schurr U, Matsubara S (2010) Continuous turnover of carotenes and chlorophyll a in mature leaves of Arabidopsis revealed by 14CO2 pulse-chase labeling. Plant Physiol 152:2188–2199.  https://doi.org/10.1104/pp.109.151647 CrossRefGoogle Scholar
  5. Bläsing OE et al (2005) Sugars and circadian regulation make major contributions to the global regulation of diurnal gene expression in Arabidopsis. Plant Cell 17:3257–3281.  https://doi.org/10.1105/tpc.105.035261 CrossRefGoogle Scholar
  6. Breeze E et al (2011) High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. Plant Cell 23:873–894.  https://doi.org/10.1105/tpc.111.083345 CrossRefGoogle Scholar
  7. Burgie ES, Vierstra RD (2014) Phytochromes: an atomic perspective on photoactivation and signaling. Plant Cell 26:4568–4583.  https://doi.org/10.1105/tpc.114.131623 CrossRefGoogle Scholar
  8. Chen Y, Shimoda Y, Yokono M, Ito H, Tanaka A (2019) Mg-dechelatase is involved in the formation of photosystem II but not in chlorophyll degradation in Chlamydomonas reinhardtii. Plant J 97:1022–1031.  https://doi.org/10.1111/tpj.14174 CrossRefGoogle Scholar
  9. Chew AG, Bryant DA (2007) Chlorophyll biosynthesis in bacteria: the origins of structural and functional diversity. Annu Rev Microbiol 61:113–129.  https://doi.org/10.1146/annurev.micro.61.080706.093242 CrossRefGoogle Scholar
  10. Christ B, Schelbert S, Aubry S, Süssenbacher I, Müller T, Kräutler B, Hörtensteiner S (2012) MES16, a member of the methylesterase protein family, specifically demethylates fluorescent chlorophyll catabolites during chlorophyll breakdown in Arabidopsis. Plant Physiol 158:628–641.  https://doi.org/10.1104/pp.111.188870 CrossRefGoogle Scholar
  11. Christ B et al (2013) Cytochrome P450 CYP89A9 is involved in the formation of major chlorophyll catabolites during leaf senescence in Arabidopsis. Plant Cell 25:1868–1880.  https://doi.org/10.1105/tpc.113.112151 CrossRefGoogle Scholar
  12. Christ B, Egert A, Süssenbacher I, Kräutler B, Bartels D, Peters S, Hörtensteiner S (2014) Water deficit induces chlorophyll degradation via the ‘PAO/phyllobilin’ pathway in leaves of homoio- (Craterostigma pumilum) and poikilochlorophyllous (Xerophyta viscosa) resurrection plants. Plant Cell Environ 37:2521–2531CrossRefGoogle Scholar
  13. Christ B, Hauenstein M, Hörtensteiner S (2016) A liquid chromatography-mass spectrometry platform for the analysis of phyllobilins, the major degradation products of chlorophyll in Arabidopsis thaliana. Plant J 88:505–518.  https://doi.org/10.1111/tpj.13253 CrossRefGoogle Scholar
  14. Curty C, Engel N (1996) Detection, isolation and structure elucidation of a chlorophyll a catabolite from autumnal senescent leaves of Cercidiphyllum japonicum. Phytochemistry 42:1531–1536.  https://doi.org/10.1016/0031-9422(96)00155-0 CrossRefGoogle Scholar
  15. Donnelly PM, Bonetta D, Tsukaya H, Dengler RE, Dengler NG (1999) Cell cycling and cell enlargement in developing leaves of Arabidopsis. Dev Biol 215:407–419.  https://doi.org/10.1006/dbio.1999.9443 CrossRefGoogle Scholar
  16. Erhart T et al (2016) Chlorophyll catabolites in senescent leaves of the plum tree (Prunus domestica). Chem Biodivers 13:1441–1453.  https://doi.org/10.1002/cbdv.201600181 CrossRefGoogle Scholar
  17. Erhart T et al (2018) Novel types of hypermodified fluorescent phyllobilins from breakdown of chlorophyll in senescent leaves of grapevine (Vitis vinifera). Chemistry 24:17268–17279.  https://doi.org/10.1002/chem.201803128 CrossRefGoogle Scholar
  18. Falk H (1989) Chemistry of linear oligopyrroles and bile pigments. Springer, WienCrossRefGoogle Scholar
  19. Farmer E, Mousavi S, Lenglet A (2013) Leaf numbering for experiments on long distance signalling in Arabidopsis. Protoc Exch 2:89.  https://doi.org/10.1038/protex.2013.1071 Google Scholar
  20. Feierabend J, Dehne S (1996) Fate of the porphyrin cofactors during the light-dependent turnover of catalase and of the photosystem II reaction-center protein D1 in mature rye leaves. Planta 198:413–422.  https://doi.org/10.1007/Bf00620058 CrossRefGoogle Scholar
  21. Gray J, Wardzala E, Yang M, Reinbothe S, Haller S, Pauli F (2004) A small family of LLS1-related non-heme oxygenases in plants with an origin amongst oxygenic photosynthesizers. Plant Mol Biol 54:39–54.  https://doi.org/10.1023/B:PLAN.0000028766.61559.4c CrossRefGoogle Scholar
  22. Grumbach KH, Lichtenthaler HK, Erismann KH (1978) Incorporation of 14CO2 in photosynthetic pigments of Chlorella pyrenoidosa. Planta 140:37–43.  https://doi.org/10.1007/BF00389377 CrossRefGoogle Scholar
  23. Hauenstein M, Christ B, Das A, Aubry S, Hörtensteiner S (2016) A role for TIC55 as a hydroxylase of phyllobilins, the products of chlorophyll breakdown during plant senescence. Plant Cell 28:2510–2527.  https://doi.org/10.1105/tpc.16.00630 CrossRefGoogle Scholar
  24. Helfrich M, Schoch S, Lempert U, Cmiel E, Rüdiger W (1994) Chlorophyll synthetase cannot synthesize chlorophyll a. Eur J Biochem 219:267–275CrossRefGoogle Scholar
  25. Heyes DJ, Hunter CN (2008) Biosynthesis of chlorophyll and bacteriochlorophyll. In: Warren MJ, Smith AG (eds) Tetrapyrroles: birth, life and death. Landes Bioscience, Austin, pp 233–247Google Scholar
  26. Horie Y, Ito H, Kusaba M, Tanaka R, Tanaka A (2009) Participation of chlorophyll b reductase in the initial step of the degradation of light-harvesting chlorophyll a/b-protein complexes in Arabidopsis. J Biol Chem 284:17449–17456.  https://doi.org/10.1074/jbc.M109.008912 CrossRefGoogle Scholar
  27. Hörtensteiner S (2009) Stay-green regulates chlorophyll and chlorophyll-binding protein degradation during senescence. Trends Plant Sci 14:155–162.  https://doi.org/10.1016/j.tplants.2009.01.002 CrossRefGoogle Scholar
  28. Hörtensteiner S (2013) Update on the biochemistry of chlorophyll breakdown. Plant Mol Biol 82:505–517.  https://doi.org/10.1007/s11103-012-9940-z CrossRefGoogle Scholar
  29. Hörtensteiner S, Kräutler B (2011) Chlorophyll breakdown in higher plants. Biochim Biophys Acta 1807:977–988.  https://doi.org/10.1016/j.bbabio.2010.12.007 CrossRefGoogle Scholar
  30. Hörtensteiner S, Vicentini F, Matile P (1995) Chlorophyll breakdown in senescent cotyledons of rape, Brassica napus L.: enzymatic cleavage of phaeophorbide a in vitro. New Phytol 129:237–246.  https://doi.org/10.1111/j.1469-8137.1995.tb04293.x CrossRefGoogle Scholar
  31. Karg CA, Wang P, Vollmar AM, Moser S (2019) Re-opening the stage for Echinacea research - Characterization of phylloxanthobilins as a novel anti-oxidative compound class in Echinacea purpurea. Phytomedicine.  https://doi.org/10.1016/j.phymed.2019.152969 Google Scholar
  32. Komenda J, Sobotka R, Nixon PJ (2012) Assembling and maintaining the photosystem II complex in chloroplasts and cyanobacteria. Curr Opin Plant Biol 15:245–251.  https://doi.org/10.1016/j.pbi.2012.01.017 CrossRefGoogle Scholar
  33. Kräutler B (2014) Phyllobilins—the abundant bilin-type tetrapyrrolic catabolites of the green plant pigment chlorophyll. Chem Soc Rev 43:6227–6238.  https://doi.org/10.1039/c4cs00079j CrossRefGoogle Scholar
  34. Kräutler B (2016) Breakdown of chlorophyll in higher plants—phyllobilins as abundant, yet hardly visible signs of ripening, senescence, and cell death. Angew Chem Int Ed 55:4882–4907.  https://doi.org/10.1002/anie.201508928 CrossRefGoogle Scholar
  35. Kräutler B, Hörtensteiner S (2014) Chlorophyll breakdown: chemistry, biochemistry and biology. In: Ferreira GC, Kadish KM, Smith KM, Guilard R (eds) Handbook of porphyrin science—chlorophyll, photosynthesis and bio-inspired energy, vol 28. Handbook of porphyrin science, vol 28. World Scientific Publishing, Singapore, pp 117–185.  https://doi.org/10.1142/9789814407755_0021
  36. Kräutler B, Mühlecker W, Anderl M, Gerlach B (1997) Breakdown of chlorophyll: partial synthesis of a putative intermediary catabolite. Helv Chim Acta 80:1355–1362.  https://doi.org/10.1002/hlca.19970800504 CrossRefGoogle Scholar
  37. Kuai B, Chen J, Hörtensteiner S (2018) The biochemistry and molecular biology of chlorophyll breakdown. J Exp Bot 69:751–767.  https://doi.org/10.1093/jxb/erx322 CrossRefGoogle Scholar
  38. Kusaba M et al (2007) Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence. Plant Cell 19:1362–1375.  https://doi.org/10.1105/tpc.106.042911 CrossRefGoogle Scholar
  39. Kusaba M, Tanaka A, Tanaka R (2013) Stay-green plants: what do they tell us about the molecular mechanism of leaf senescence. Photosynth Res 117:221–234.  https://doi.org/10.1007/s11120-013-9862-x CrossRefGoogle Scholar
  40. Li HM, Pu H (2016) Crystal structure of methylesterase family member 16 (MES16) from Arabidopsis thaliana. Biochem Biophys Res Commun 474:226–231.  https://doi.org/10.1016/j.bbrc.2016.04.115 CrossRefGoogle Scholar
  41. Li C, Erhart T, Liu X, Kräutler B (2019) Yellow dioxobilin-type tetrapyrroles from chlorophyll breakdown in higher plants—a new class of colored phyllobilins. Chemistry.  https://doi.org/10.1002/chem.201806038 Google Scholar
  42. Lim PO, Kim HJ, Nam HG (2007) Leaf senescence. Annu Rev Plant Biol 58:115–136.  https://doi.org/10.1146/annurev.arplant.57.032905.105316 CrossRefGoogle Scholar
  43. Lin YP, Lee TY, Tanaka A, Charng YY (2014) Analysis of an Arabidopsis heat-sensitive mutant reveals that chlorophyll synthase is involved in reutilization of chlorophyllide during chlorophyll turnover. Plant J 80:14–26.  https://doi.org/10.1111/tpj.12611 CrossRefGoogle Scholar
  44. Lin YP, Wu MC, Charng YY (2016) Identification of a chlorophyll dephytylase involved in chlorophyll turnover in Arabidopsis. Plant Cell 28:2974–2990.  https://doi.org/10.1105/tpc.16.00478 CrossRefGoogle Scholar
  45. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔ CT method. Methods 25:402–408.  https://doi.org/10.1006/meth.2001.1262 CrossRefGoogle Scholar
  46. Matile P, Hörtensteiner S, Thomas H (1999) Chlorophyll degradation. Annu Rev Plant Physiol Plant Mol Biol 50:67–95.  https://doi.org/10.1146/annurev.arplant.50.1.67 CrossRefGoogle Scholar
  47. Meguro M, Ito H, Takabayashi A, Tanaka R, Tanaka A (2011) Identification of the 7-hydroxymethyl chlorophyll a reductase of the chlorophyll cycle in Arabidopsis. Plant Cell 23:3442–3453.  https://doi.org/10.1105/tpc.111.089714 CrossRefGoogle Scholar
  48. Miao Y, Zentgraf U (2007) The antagonist function of Arabidopsis WRKY53 and ESR/ESP in leaf senescence is modulated by the jasmonic and salicylic acid equilibrium. Plant Cell 19:819–830.  https://doi.org/10.1105/tpc.106.042705 CrossRefGoogle Scholar
  49. Mittelberger C et al (2017) Pathogen-induced leaf chlorosis: products of chlorophyll breakdown found in degreened leaves of Phytoplasma-infected apple (Malus x domestica Borkh.) and spricot (Prunus armeniaca L.) trees relate to the pheophorbide a oxygenase/phyllobilin pathway. J Agric Food Chem 65:2651–2660.  https://doi.org/10.1021/acs.jafc.6b05501 CrossRefGoogle Scholar
  50. Mochizuki N et al (2010) The cell biology of tetrapyrroles: a life and death struggle. Trends Plant Sci 15:488–498.  https://doi.org/10.1016/j.tplants.2010.05.012 CrossRefGoogle Scholar
  51. Mühlecker W, Kräutler B (1996) Breakdown of chlorophyll: constitution of nonfluorescing chlorophyll-catabolites from senescent cotyledons of the dicot rape. Plant Physiol Biochem 34:61–75Google Scholar
  52. Mühlecker W, Ongania K-H, Kräutler B, Matile P, Hörtensteiner S (1997) Tracking down chlorophyll breakdown in plants: elucidation of the constitution of a ‘fluorescent’ chlorophyll catabolite. Angew Chem Int Ed Engl 36:401–404.  https://doi.org/10.1002/anie.199704011 CrossRefGoogle Scholar
  53. Nickelsen J, Rengstl B (2013) Photosystem II assembly: from cyanobacteria to plants. Annu Rev Plant Biol 64:609–635.  https://doi.org/10.1146/annurev-arplant-050312-120124 CrossRefGoogle Scholar
  54. Oberhuber M, Berghold J, Breuker K, Hörtensteiner S, Kräutler B (2003) Breakdown of chlorophyll: a nonenzymatic reaction accounts for the formation of the colorless “nonfluorescent” chlorophyll catabolites. Proc Natl Acad Sci USA 100:6910–6915.  https://doi.org/10.1073/pnas.1232207100 CrossRefGoogle Scholar
  55. Oberhuber M, Berghold J, Kräutler B (2008) Chlorophyll breakdown by a biomimetic route. Angew Chem Int Ed 47:3057–3061.  https://doi.org/10.1002/anie.200705330 CrossRefGoogle Scholar
  56. Ougham H, Hörtensteiner S, Armstead I, Donnison I, King I, Thomas H, Mur L (2008) The control of chlorophyll catabolism and the status of yellowing as a biomarker of leaf senescence. Plant Biol 10(Suppl. 1):4–14.  https://doi.org/10.1111/j.1438-8677.2008.00081.x CrossRefGoogle Scholar
  57. Perkins HJ, Roberts DWA (1963) On chlorophyll turnover in monocotyledons and dicotyledons. Can J Bot 41:221–226CrossRefGoogle Scholar
  58. Pružinská A, Anders I, Tanner G, Roca M, Hörtensteiner S (2003) Chlorophyll breakdown: pheophorbide a oxygenase is a Rieske-type iron-sulfur protein, encoded by the accelerated cell death 1 gene. Proc Natl Acad Sci USA 100:15259–15264.  https://doi.org/10.1073/pnas.2036571100 CrossRefGoogle Scholar
  59. Pružinská A et al (2005) Chlorophyll breakdown in senescent Arabidopsis leaves: characterization of chlorophyll catabolites and of chlorophyll catabolic enzymes involved in the degreening reaction. Plant Physiol 139:52–63.  https://doi.org/10.1104/pp.105.065870 CrossRefGoogle Scholar
  60. Ren G et al (2007) Identification of a novel chloroplast protein AtNYE1 regulating chlorophyll degradation during leaf senescence in Arabidopsis. Plant Physiol 144:1429–1441.  https://doi.org/10.1104/pp.107.100172 CrossRefGoogle Scholar
  61. Riper DM, Owens TG, Falkowsky PG (1979) Chlorophyll turnover in Skeletonema costatum, a marine plankton Diatom. Plant Physiol 64:49–54CrossRefGoogle Scholar
  62. Rodoni S et al (1997) Chlorophyll breakdown in senescent chloroplasts. Cleavage of pheophorbide a in two enzymic steps. Plant Physiol 115:669–676.  https://doi.org/10.1104/pp.115.2.669 CrossRefGoogle Scholar
  63. Saga Y, Tamiaki H (2012) Demetalation of chlorophyll pigments. Chem Biodivers 9:1659–1683.  https://doi.org/10.1002/cbdv.201100435 CrossRefGoogle Scholar
  64. Sakuraba Y, Park SY, Kim YS, Wang SH, Yoo SC, Hörtensteiner S, Paek NC (2014) Arabidopsis STAY-GREEN2 is a negative regulator of chlorophyll degradation during leaf senescence. Mol Plant 7:1288–1302.  https://doi.org/10.1093/Mp/Ssu045 CrossRefGoogle Scholar
  65. Schelbert S, Aubry S, Burla B, Agne B, Kessler F, Krupinska K, Hörtensteiner S (2009) Pheophytin pheophorbide hydrolase (pheophytinase) is involved in chlorophyll breakdown during leaf senescence in Arabidopsis. Plant Cell 21:767–785.  https://doi.org/10.1105/tpc.108.064089 CrossRefGoogle Scholar
  66. Scherl M, Müller T, Kreutz CR, Huber RG, Zass E, Liedl KR, Kräutler B (2016) Chlorophyll catabolites in fall leaves of the wych elm tree present a novel glyosylation motif. Chemistry 22:9498–9503.  https://doi.org/10.1002/chem.201601739 CrossRefGoogle Scholar
  67. Scheumann V, Schoch S, Rüdiger W (1999) Chlorophyll b reduction during senescence of barley seedlings. Planta 209:364–370CrossRefGoogle Scholar
  68. Shimoda Y, Ito H, Tanaka A (2012) Conversion of chlorophyll b to chlorophyll a precedes magnesium dechelation for protection against necrosis in Arabidopsis. Plant J 72:501–511.  https://doi.org/10.1111/j.1365-313X.2012.05095.x CrossRefGoogle Scholar
  69. Shimoda Y, Ito H, Tanaka A (2016) Arabidopsis STAY-GREEN, Mendel’s green cotyledon gene, encodes magnesium-dechelatase. Plant Cell 28:2147–2160.  https://doi.org/10.1105/tpc.16.00428 CrossRefGoogle Scholar
  70. Strain HH, Cope BT, Svec WA (1971) Analytical procedures for the isolation, identification, estimation and investigation of the chlorophylls. Methods Enzymol 23:452–476.  https://doi.org/10.1016/S0076-6879(71)23118-9 CrossRefGoogle Scholar
  71. Süssenbacher I, Christ B, Hörtensteiner S, Kräutler B (2014) Hydroxymethylated phyllobilins: a puzzling new feature of the dioxobilin branch of chlorophyll breakdown. Chemistry 20:87–92.  https://doi.org/10.1002/chem.201303398 CrossRefGoogle Scholar
  72. Süssenbacher I, Hörtensteiner S, Kräutler B (2015a) A dioxobilin-type fluorescent chlorophyll catabolite as a transient early intermediate of the dioxobilin-branch of chlorophyll breakdown in Arabidopsis thaliana. Angew Chem Int Ed 54:13777–13781.  https://doi.org/10.1002/anie.201506299 CrossRefGoogle Scholar
  73. Süssenbacher I, Kreutz C, Christ B, Hörtensteiner S, Kräutler B (2015b) Hydroxymethylated dioxobilins in senescent Arabidopsis thaliana leaves—sign of a puzzling biosynthetic intermezzo of chlorophyll breakdown. Chemistry 21:11664–11670.  https://doi.org/10.1002/chem.201501489 CrossRefGoogle Scholar
  74. Tanaka R, Kobayashi K, Masuda T (2011) Tetrapyrrole metabolism in Arabidopsis thaliana. Arabidopsis Book 9:e0145.  https://doi.org/10.1199/tab.0145 CrossRefGoogle Scholar
  75. Theis J, Schroda M (2016) Revisiting the photosystem II repair cycle. Plant Signal Behav 11:e1218587.  https://doi.org/10.1080/15592324.2016.1218587 CrossRefGoogle Scholar
  76. Thomas H, Huang L, Young M, Ougham H (2009) Evolution of plant senescence. BMC Evol Biol 9:163.  https://doi.org/10.1186/1471-2148-9-163 CrossRefGoogle Scholar
  77. Vass I, Cser K (2009) Janus-faced charge recombinations in photosystem II photoinhibition. Trends Plant Sci 14:200–205.  https://doi.org/10.1016/j.tplants.2009.01.009 CrossRefGoogle Scholar
  78. Vavilin D, Vermaas W (2007) Continuous chlorophyll degradation accompanied by chlorophyllide and phytol reutilization for chlorophyll synthesis in Synechocystis sp. PCC 6803. Biochim Biophys Acta 1767:920–929.  https://doi.org/10.1016/j.bbabio.2007.03.010 CrossRefGoogle Scholar
  79. Vergeiner C, Banala S, Kräutler B (2013) Chlorophyll breakdown in senescent banana leaves: catabolism reprogrammed for biosynthesis of persistent blue fluorescent tetrapyrroles. Chemistry 19:12294–12305.  https://doi.org/10.1002/chem.201301907 CrossRefGoogle Scholar
  80. Wu S et al (2016) NON-YELLOWING2 (NYE2), a close paralog of NYE1, plays a positive role in chlorophyll degradation in Arabidopsis. Mol Plant 9:624–627.  https://doi.org/10.1016/j.molp.2015.12.016 CrossRefGoogle Scholar
  81. Wüthrich KL, Bovet L, Hunziker PE, Donnison IS, Hörtensteiner S (2000) Molecular cloning, functional expression and characterisation of RCC reductase involved in chlorophyll catabolism. Plant J 21:189–198.  https://doi.org/10.1046/j.1365-313x.2000.00667.x CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institute of Organic Chemistry and Centre of Molecular BiosciencesUniversity of InnsbruckInnsbruckAustria
  2. 2.Institute of Plant and Microbial BiologyUniversity of ZürichZurichSwitzerland

Personalised recommendations