Photosynthesis Research

, Volume 138, Issue 3, pp 289–301 | Cite as

Routing of thylakoid lumen proteins by the chloroplast twin arginine transport pathway

  • Christopher Paul New
  • Qianqian Ma
  • Carole Dabney-SmithEmail author


Thylakoids are complex sub-organellar membrane systems whose role in photosynthesis makes them critical to life. Thylakoids require the coordinated expression of both nuclear- and plastid-encoded proteins to allow rapid response to changing environmental conditions. Transport of cytoplasmically synthesized proteins to thylakoids or the thylakoid lumen is complex; the process involves transport across up to three membrane systems with routing through three aqueous compartments. Protein transport in thylakoids is accomplished by conserved ancestral prokaryotic plasma membrane translocases containing novel adaptations for the sub-organellar location. This review focuses on the evolutionarily conserved chloroplast twin arginine transport (cpTat) pathway. An overview is provided of known aspects of the cpTat components, energy requirements, and mechanisms with a focus on recent discoveries. Some of the most exciting new studies have been in determining the structural architecture of the membrane complex involved in forming the point of passage for the precursor and binding features of the translocase components. The cpTat system is of particular interest because it transports folded protein domains using only the proton motive force for energy. The implications for mechanism of translocation by recent studies focusing on interactions between membrane Tat components and with the translocating precursor will be discussed.


Chloroplast twin arginine transport cpTat Thylakoid protein routing 



The authors thank members of the Dabney-Smith group for valuable comments and discussion and we thank Richard C. Page (Miami University) for help with the Rosetta3 simulations. Additional molecular graphics and analyses were performed with the UCSF Chimera package. Chimera is developed by the Resource for Biocomputing, Visualization, and Informatics at the University of California, San Francisco (supported by NIGMS P41-GM103311). This work was funded by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy through Grant DE-SC0014441 (CDS).


  1. Alami M, Luke I, Deitermann S, Eisner G, Koch HG, Brunner J, Muller M (2003) Differential interactions between a twin-arginine signal peptide and its translocase in Escherichia coli. Mol Cell 12(4):937–946CrossRefGoogle Scholar
  2. Alcock F, Baker MA, Greene NP, Palmer T, Wallace MI, Berks BC (2013) Live cell imaging shows reversible assembly of the TatA component of the twin-arginine protein transport system. Proc Natl Acad Sci USA 110(38):E3650–E3659. CrossRefPubMedGoogle Scholar
  3. Alcock F, Stansfeld PJ, Basit H, Habersetzer J, Baker MA, Palmer T, Wallace MI, Berks BC (2016) Assembling the Tat protein translocase. Elife 5.
  4. Alcock F, Damen MP, Levring J, Berks BC (2017) In vivo experiments do not support the charge zipper model for Tat translocase assembly. Elife 6.
  5. Alder NN, Theg SM (2003) Energetics of protein transport across biological membranes. a study of the thylakoid DeltapH-dependent/cpTat pathway. Cell 112(2):231–242CrossRefGoogle Scholar
  6. Aldridge C, Storm A, Cline K, Dabney-Smith C (2012) The chloroplast twin arginine transport (Tat) component, Tha4, undergoes conformational changes leading to Tat protein transport. J Biol Chem 287(41):34752–34763. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Aldridge C, Ma X, Gerard F, Cline K (2014) Substrate-gated docking of pore subunit Tha4 in the TatC cavity initiates Tat translocase assembly. J Cell Biol 205(1):51–65. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bageshwar UK, Musser SM (2007) Two electrical potential-dependent steps are required for transport by the Escherichia coli Tat machinery. J Cell Biol 179(1):87–99. pii]CrossRefPubMedPubMedCentralGoogle Scholar
  9. Berks BC (2015) The twin-arginine protein translocation pathway. Annu Rev Biochem 84:843–864. CrossRefPubMedGoogle Scholar
  10. Berks BC, Sargent F, Palmer T (2000) The Tat protein export pathway. Mol Microbiol 35(2):260–274CrossRefGoogle Scholar
  11. Berks BC, Palmer T, Sargent F (2003) The Tat protein translocation pathway and its role in microbial physiology. Adv Microb Physiol 47:187–254CrossRefGoogle Scholar
  12. Berks BC, Lea SM, Stansfeld PJ (2014) Structural biology of Tat protein transport. Curr Opin Struct Biol 27:32–37. CrossRefPubMedGoogle Scholar
  13. Blummel AS, Haag LA, Eimer E, Muller M, Frobel J (2015) Initial assembly steps of a translocase for folded proteins. Nat Commun 6:7234. CrossRefPubMedPubMedCentralGoogle Scholar
  14. Bogsch EG, Sargent F, Stanley NR, Berks BC, Robinson C, Palmer T (1998) An essential component of a novel bacterial protein export system with homologues in plastids and mitochondria. J Biol Chem 273(29):18003–18006CrossRefGoogle Scholar
  15. Bolhuis A, Mathers JE, Thomas JD, Barrett CM, Robinson C (2001) TatB and TatC form a functional and structural unit of the twin-arginine translocase from Escherichia coli. J Biol Chem 276(23):20213–20219. CrossRefPubMedGoogle Scholar
  16. Braun NA, Theg SM (2008) The chloroplast Tat pathway transports substrates in the dark. J Biol Chem 283(14):8822–8828. CrossRefPubMedGoogle Scholar
  17. Braun NA, Davis AW, Theg SM (2007) The chloroplast Tat pathway utilizes the transmembrane electric potential as an energy source. Biophys J 93(6):1993–1998. pii]CrossRefPubMedPubMedCentralGoogle Scholar
  18. Brock IW, Mills JD, Robinson D, Robinson C (1995) The delta pH-driven, ATP-independent protein translocation mechanism in the chloroplast thylakoid membrane. Kinetics and energetics. J Biol Chem 270(4):1657–1662CrossRefGoogle Scholar
  19. Brüser T, Sanders C (2003) An alternative model of the twin arginine translocation system. Microbiol Res 158(1):7–17CrossRefGoogle Scholar
  20. Buchanan G, de Leeuw E, Stanley NR, Wexler M, Berks BC, Sargent F, Palmer T (2002) Functional complexity of the twin-arginine translocase TatC component revealed by site-directed mutagenesis. Mol Microbiol 43(6):1457–1470CrossRefGoogle Scholar
  21. Carrie C, Weissenberger S, Soll J (2016) Plant mitochondria contain the protein translocase subunits TatB and TatC. J Cell Sci 129:3935–3947CrossRefGoogle Scholar
  22. Celedon JM, Cline K (2012) Stoichiometry for binding and transport by the twin arginine translocation system. J Cell Biol 197(4):523–534. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Chaddock AM, Mant A, Karnauchov I, Brink S, Herrmann RG, Klosgen RB, Robinson C (1995) A new type of signal peptide: central role of a twin-arginine motif in transfer signals for the delta pH-dependent thylakoidal protein translocase. EMBO J 14(12):2715–2722CrossRefGoogle Scholar
  24. Cleon F, Habersetzer J, Alcock F, Kneuper H, Stansfeld PJ, Basit H, Wallace MI, Berks BC, Palmer T (2015) The TatC component of the twin-arginine protein translocase functions as an obligate oligomer. Mol Microbiol 98(1):111–129CrossRefGoogle Scholar
  25. Cline K (2015) Mechanistic aspects of folded protein transport by the twin arginine translocase (Tat). J Biol Chem 290(27):16530–16538. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Cline K, Mori H (2001) Thylakoid DeltapH-dependent precursor proteins bind to a cpTatC-Hcf106 complex before Tha4-dependent transport. J Cell Biol 154(4):719–729. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Cline K, Ettinger WF, Theg SM (1992) Protein-specific energy requirements for protein transport across or into thylakoid membranes. Two lumenal proteins are transported in the absence of ATP. J Biol Chem 267(4):2688–2696PubMedGoogle Scholar
  28. Cronan JE (2003) Bacterial membrane lipids: where do we stand? Annu Rev Microbiol 57:203–224. CrossRefPubMedGoogle Scholar
  29. Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14(6):1188–1190. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Dabney-Smith C, Cline K (2009) Clustering of C-terminal stromal domains of Tha4 homo-oligomers during translocation by the Tat protein transport system. Mol Biol Cell 20(7):2060–2069. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Dabney-Smith C, Mori H, Cline K (2006) Oligomers of Tha4 organize at the thylakoid Tat translocase during protein transport. J Biol Chem 281(9):5476–5483. CrossRefPubMedGoogle Scholar
  32. Dilks K, Rose RW, Hartmann E, Pohlschroder M (2003) Prokaryotic utilization of the twin-arginine translocation pathway: a genomic survey. J Bacteriol 185(4):1478–1483CrossRefGoogle Scholar
  33. Fincher V, McCaffery M, Cline K (1998) Evidence for a loop mechanism of protein transport by the thylakoid Delta pH pathway. FEBS Lett 423(1):66–70CrossRefGoogle Scholar
  34. Frobel J, Rose P, Lausberg F, Blummel AS, Freudl R, Muller M (2012) Transmembrane insertion of twin-arginine signal peptides is driven by TatC and regulated by TatB. Nat Commun 3:1311. CrossRefPubMedPubMedCentralGoogle Scholar
  35. Gérard F, Cline K (2006) Efficient twin arginine translocation (Tat) pathway transport of a precursor protein covalently anchored to its initial cpTatC binding site. J Biol Chem 281(10):6130–6135. pii]CrossRefPubMedGoogle Scholar
  36. Gérard F, Cline K (2007) The thylakoid proton gradient promotes an advanced stage of signal peptide binding deep within the Tat pathway receptor complex. J Biol Chem 282(8):5263–5272. pii]CrossRefPubMedGoogle Scholar
  37. Gohlke U, Pullan L, McDevitt CA, Porcelli I, de Leeuw E, Palmer T, Saibil HR, Berks BC (2005) The TatA component of the twin-arginine protein transport system forms channel complexes of variable diameter. Proc Natl Acad Sci USA 102(30):10482–10486. pii]CrossRefPubMedGoogle Scholar
  38. Habersetzer J, Moore K, Cherry J, Buchanan G, Stansfeld PJ, Palmer T (2017) Substrate-triggered position switching of TatA and TatB during Tat transport in Escherichia coli. Open Biol 7 (8). CrossRefGoogle Scholar
  39. Hamsanathan S, Anthonymuthu TS, Bageshwar UK, Musser SM (2017) A hinged signal peptide hairpin enables Tat-dependent protein translocation. Biophys J 113:2650–2668CrossRefGoogle Scholar
  40. Hauer RS, Freudl R, Dittmar J, Jakob M, Klosgen RB (2017) How to achieve Tat transport with alien TatA. Sci Rep 7(1):8808. CrossRefPubMedPubMedCentralGoogle Scholar
  41. Henry R, Carrigan M, McCaffrey M, Ma X, Cline K (1997) Targeting determinants and proposed evolutionary basis for the Sec and the Delta pH protein transport systems in chloroplast thylakoid membranes. J Cell Biol 136(4):823–832CrossRefGoogle Scholar
  42. Holzapfel E, Eisner G, Alami M, Barrett CM, Buchanan G, Luke I, Betton JM, Robinson C, Palmer T, Moser M, Muller M (2007) The entire N-terminal half of TatC is involved in twin-arginine precursor binding. Biochemistry 46(10):2892–2898. CrossRefPubMedGoogle Scholar
  43. Hou B, Frielingsdorf S, Klosgen RB (2006) Unassisted membrane insertion as the initial step in DeltapH/Tat-dependent protein transport. J Mol Biol 355(5):957–967. CrossRefPubMedGoogle Scholar
  44. Hu Y, Zhao E, Li H, Xia B, Jin C (2010) Solution NMR structure of the TatA component of the twin-arginine protein transport system from gram-positive bacterium Bacillus subtilis. J Am Chem Soc 132(45):15942–15944. CrossRefPubMedGoogle Scholar
  45. Huang Q, Palmer T (2017) Signal peptide hydrophobicity modulates interaction with the twin-arginine translocase. MBio 8 (4).
  46. Huang Q, Alcock F, Kneuper H, Deme JC, Rollauer SE, Lea SM, Berks BC, Palmer T (2017) A signal sequence suppressor mutant that stabilizes an assembled state of the twin arginine translocase. Proc Natl Acad Sci USA 114(10):E1958–E1967. CrossRefPubMedGoogle Scholar
  47. Jack RL, Sargent F, Berks BC, Sawers G, Palmer T (2001) Constitutive expression of Escherichia coli tat genes indicates an important role for the twin-arginine translocase during aerobic and anaerobic growth. J Bacteriol 183(5):1801–1804CrossRefGoogle Scholar
  48. James MJ, Coulthurst SJ, Palmer T, Sargent F (2013) Signal peptide etiquette during assembly of a complex respiratory enzyme. Mol Microbiol 90(2):400–414. CrossRefPubMedGoogle Scholar
  49. Jarvi S, Gollan PJ, Aro EM (2013) Understanding the roles of the thylakoid lumen in photosynthesis regulation. Front Plant Sci 4:434. CrossRefPubMedPubMedCentralGoogle Scholar
  50. Kahraman A, Herzog F, Leitner A, Rosenberger G, Aebersold R, Malmstrom L (2013) Cross-link guided molecular modeling with ROSETTA. PLoS ONE 8(9):e73411. CrossRefPubMedPubMedCentralGoogle Scholar
  51. Kneuper H, Maldonado B, Jager F, Krehenbrink M, Buchanan G, Keller R, Muller M, Berks BC, Palmer T (2012) Molecular dissection of TatC defines critical regions essential for protein transport and a TatB-TatC contact site. Mol Microbiol 85(5):945–961. CrossRefPubMedPubMedCentralGoogle Scholar
  52. Koch S, Fritsch MJ, Buchanan G, Palmer T (2012) Escherichia coli TatA and TatB proteins have N-out, C-in topology in intact cells. J Biol Chem 287(18):14420–14431. CrossRefPubMedPubMedCentralGoogle Scholar
  53. Kreutzenbeck P, Kroger C, Lausberg F, Blaudeck N, Sprenger GA, Freudl R (2007) Escherichia coli twin arginine (Tat) mutant translocases possessing relaxed signal peptide recognition specificities. J Biol Chem 282(11):7903–7911. pii]CrossRefPubMedGoogle Scholar
  54. Leake MC, Greene NP, Godun RM, Granjon T, Buchanan G, Chen S, Berry RM, Palmer T, Berks BC (2008) Variable stoichiometry of the TatA component of the twin-arginine protein transport system observed by in vivo single-molecule imaging. Proc Natl Acad Sci USA 105(40):15376–15381. pii]CrossRefPubMedGoogle Scholar
  55. Lee PA, Orriss GL, Buchanan G, Greene NP, Bond PJ, Punginelli C, Jack RL, Sansom MS, Berks BC, Palmer T (2006) Cysteine-scanning mutagenesis and disulfide mapping studies of the conserved domain of the twin-arginine translocase TatB component. J Biol Chem 281(45):34072–34085. pii]CrossRefPubMedGoogle Scholar
  56. Leister D (2003) Chloroplast research in the genomic age. Trends Genet 19(1):47–56. doi:S0168952502000033 [pii]CrossRefGoogle Scholar
  57. Ma X, Cline K (2000) Precursors bind to specific sites on thylakoid membranes prior to transport on the delta pH protein translocation system. J Biol Chem 275(14):10016–10022CrossRefGoogle Scholar
  58. Ma X, Cline K (2010) Multiple precursor proteins bind individual Tat receptor complexes and are collectively transported. EMBO J 29(9):1477–1488. CrossRefPubMedPubMedCentralGoogle Scholar
  59. Ma X, Cline K (2013) Mapping the signal peptide binding and oligomer contact sites of the core subunit of the pea twin arginine protein translocase. Plant Cell 25(3):999–1015. CrossRefPubMedPubMedCentralGoogle Scholar
  60. Mori H, Cline K (2001) Post-translational protein translocation into thylakoids by the Sec and DeltapH-dependent pathways. Biochim Biophys Acta 1541(1–2):80–90CrossRefGoogle Scholar
  61. Mori H, Cline K (2002) A twin arginine signal peptide and the pH gradient trigger reversible assembly of the thylakoid [Delta]pH/Tat translocase. J Cell Biol 157(2):205–210CrossRefGoogle Scholar
  62. Mori H, Summer EJ, Ma X, Cline K (1999) Component specificity for the thylakoidal Sec and Delta pH-dependent protein transport pathways. J Cell Biol 146(1):45–56CrossRefGoogle Scholar
  63. Mould RM, Robinson C (1991) A proton gradient is required for the transport of two lumenal oxygen-evolving proteins across the thylakoid membrane. J Biol Chem 266(19):12189–12193PubMedGoogle Scholar
  64. Niviere V, Wong SL, Voordouw G (1992) Site-directed mutagenesis of the hydrogenase signal peptide consensus box prevents export of a beta-lactamase fusion protein. J Gen Microbiol 138(10):2173–2183. CrossRefPubMedGoogle Scholar
  65. Pal D, Fite K, Dabney-Smith C (2013) Direct interaction between a precursor mature domain and transport component Tha4 during twin arginine transport of chloroplasts. Plant Physiol 161(2):990–1001. CrossRefPubMedGoogle Scholar
  66. Palmer T, Berks BC (2012) The twin-arginine translocation (Tat) protein export pathway. Nat Rev Microbiol 10(7):483–496. CrossRefPubMedGoogle Scholar
  67. Peltier JB, Friso G, Kalume DE, Roepstorff P, Nilsson F, Adamska I, van Wijk KJ (2000) Proteomics of the chloroplast: systematic identification and targeting analysis of lumenal and peripheral thylakoid proteins. Plant Cell 12(3):319–341CrossRefGoogle Scholar
  68. Peltier JB, Emanuelsson O, Kalume DE, Ytterberg J, Friso G, Rudella A, Liberles DA, Soderberg L, Roepstorff P, von Heijne G, van Wijk KJ (2002) Central functions of the lumenal and peripheral thylakoid proteome of Arabidopsis determined by experimentation and genome-wide prediction. Plant Cell 14(1):211–236CrossRefGoogle Scholar
  69. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612. CrossRefPubMedGoogle Scholar
  70. Ramasamy S, Abrol R, Suloway CJ, Clemons WM Jr (2013) The glove-like structure of the conserved membrane protein TatC provides insight into signal sequence recognition in twin-arginine translocation. Structure 21(5):777–788. CrossRefPubMedPubMedCentralGoogle Scholar
  71. Robinson C, Bolhuis A (2004) Tat-dependent protein targeting in prokaryotes and chloroplasts. Biochim Biophys Acta 1694(1–3):135–147. pii]CrossRefPubMedGoogle Scholar
  72. Rodriguez F, Rouse SL, Tait CE, Harmer J, De Riso A, Timmel CR, Sansom MS, Berks BC, Schnell JR (2013) Structural model for the protein-translocating element of the twin-arginine transport system. Proc Natl Acad Sci USA 110(12):E1092–E1101. CrossRefPubMedGoogle Scholar
  73. Rollauer SE, Tarry MJ, Graham JE, Jaaskelainen M, Jager F, Johnson S, Krehenbrink M, Liu SM, Lukey MJ, Marcoux J, McDowell MA, Rodriguez F, Roversi P, Stansfeld PJ, Robinson CV, Sansom MS, Palmer T, Hogbom M, Berks BC, Lea SM (2012) Structure of the TatC core of the twin-arginine protein transport system. Nature 492(7428):210–214. CrossRefPubMedPubMedCentralGoogle Scholar
  74. Rose P, Frobel J, Graumann PL, Muller M (2013) Substrate-dependent assembly of the Tat translocase as observed in live Escherichia coli cells. PLoS ONE 8(8):e69488. CrossRefPubMedPubMedCentralGoogle Scholar
  75. Šali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815. CrossRefPubMedGoogle Scholar
  76. Sargent F, Bogsch EG, Stanley NR, Wexler M, Robinson C, Berks BC, Palmer T (1998) Overlapping functions of components of a bacterial Sec-independent protein export pathway. EMBO J 17(13):3640–3650CrossRefGoogle Scholar
  77. Sargent F, Gohlke U, De Leeuw E, Stanley NR, Palmer T, Saibil HR, Berks BC (2001) Purified components of the Escherichia coli Tat protein transport system form a double-layered ring structure. Eur J Biochem 268(12):3361–3367CrossRefGoogle Scholar
  78. Sargent F, Berks BC, Palmer T (2006) Pathfinders and trailblazers: a prokaryotic targeting system for transport of folded proteins. FEMS Microbiol Lett 254(2):198–207. pii]CrossRefPubMedGoogle Scholar
  79. Settles AM, Yonetani A, Baron A, Bush DR, Cline K, Martienssen R (1997) Sec-independent protein translocation by the maize Hcf106 protein. Science 278(5342):1467–1470CrossRefGoogle Scholar
  80. Sprague SG, Staehelin LA (1984) A rapid reverse phase evaporation method for the reconstitution of uncharged thylakoid membrane lipids that resist hydration. Plant Physiol 75(2):502–504CrossRefGoogle Scholar
  81. Strauch EM, Georgiou G (2007) Escherichia coli tatC mutations that suppress defective twin-arginine transporter signal peptides. J Mol Biol 374(2):283–291. pii]CrossRefPubMedPubMedCentralGoogle Scholar
  82. Tarry MJ, Schafer E, Chen S, Buchanan G, Greene NP, Lea SM, Palmer T, Saibil HR, Berks BC (2009) Structural analysis of substrate binding by the TatBC component of the twin-arginine protein transport system. Proc Natl Acad Sci USA 106(32):13284–13289. CrossRefPubMedGoogle Scholar
  83. Ulfig A, Frobel J, Lausberg F, Blummel AS, Heide AK, Muller M, Freudl R (2017) The h-region of twin-arginine signal peptides supports productive binding of bacterial Tat precursor proteins to the TatBC receptor complex. J Biol Chem 292(26):10865–10882. CrossRefPubMedPubMedCentralGoogle Scholar
  84. Walther TH, Grage SL, Roth N, Ulrich AS (2010) Membrane alignment of the pore-forming component TatA(d) of the twin-arginine translocase from Bacillus subtilis resolved by solid-state NMR spectroscopy. J Am Chem Soc 132(45):15945–15956. CrossRefPubMedGoogle Scholar
  85. Walther TH, Gottselig C, Grage SL, Wolf M, Vargiu AV, Klein MJ, Vollmer S, Prock S, Hartmann M, Afonin S, Stockwald E, Heinzmann H, Nolandt OV, Wenzel W, Ruggerone P, Ulrich AS (2013) Folding and self-assembly of the TatA translocation pore based on a charge zipper mechanism. Cell 152(1–2):316–326. CrossRefPubMedGoogle Scholar
  86. Yen MR, Tseng YH, Nguyen EH, Wu LF, Saier MH Jr (2002) Sequence and phylogenetic analyses of the twin-arginine targeting (Tat) protein export system. Arch Microbiol 177(6):441–450. CrossRefPubMedGoogle Scholar
  87. Zhang Y, Wang L, Hu Y, Jin C (2014) Solution structure of the TatB component of the twin-arginine translocation system. Biochim Biophys Acta 1838(7):1881–1888. CrossRefPubMedGoogle Scholar
  88. Zoufaly S, Frobel J, Rose P, Flecken T, Maurer C, Moser M, Muller M (2012) Mapping precursor-binding site on TatC subunit of twin arginine-specific protein translocase by site-specific photo cross-linking. J Biol Chem 287(16):13430–13441. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Cellular, Molecular, and Structural Biology Graduate ProgramMiami UniversityOxfordUSA
  2. 2.Department of Chemistry and BiochemistryMiami UniversityOxfordUSA

Personalised recommendations