Advertisement

Pigment configuration in the light-harvesting protein of the xanthophyte alga Xanthonema debile

  • Simona Streckaite
  • Zdenko Gardian
  • Fei Li
  • Andrew A. Pascal
  • Radek Litvin
  • Bruno Robert
  • Manuel J. Llansola-Portoles
Original article

Abstract

The soil chromophyte alga Xanthonema (X.) debile contains only non-carbonyl carotenoids and Chl-a. X. debile has an antenna system denoted Xanthophyte light-harvesting complex (XLH) that contains the carotenoids diadinoxanthin, heteroxanthin, and vaucheriaxanthin. The XLH pigment stoichiometry was calculated by chromatographic techniques and the pigment-binding structure studied by resonance Raman spectroscopy. The pigment ratio obtained by HPLC was found to be close to 8:1:2:1 Chl-a:heteroxanthin:diadinoxanthin:vaucheriaxanthin. The resonance Raman spectra suggest the presence of 8–10 Chl-a, all of which are 5-coordinated to the central Mg, with 1–3 Chl-a possessing a macrocycle distorted from the relaxed conformation. The three populations of carotenoids are in the all-trans configuration. Vaucheriaxanthin absorbs around 500–530 nm, diadinoxanthin at 494 nm and heteroxanthin at 487 nm at 4.5 K. The effective conjugation length of heteroxanthin and diadinoxanthin has been determined as 9.4 in both cases; the environment polarizability of the heteroxanthin and diadinoxanthin binding pockets is 0.270 and 0.305, respectively.

Keywords

Light-harvesting complex Algae Resonance Raman Chl-a Carotenoids Diadinoxanthin Heteroxanthin 

Notes

Acknowledgements

This work was supported by the ERC funding agency (PHOTPROT project), the French Infrastructure for Integrated Structural Biology (FRISBI) ANR-10-INBS-05, and the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant agreement No 675006 (SE2B). The research in the Czech Republic was supported by the Czech Science Foundation Grant P501/12/G055, European Regional Development Fund (No. CZ.02.1.01/0.0/0.0/15_003/0000441), and by institutional funding RVO:60077344.

References

  1. Andreeva A, Apostolova I, Velitchkova M (2011) Temperature dependence of resonance Raman spectra of carotenoids. Spectrochim Acta A 78(4):1261–1265.  https://doi.org/10.1016/j.saa.2010.12.071 CrossRefGoogle Scholar
  2. Andreoli C, Moro I, La Rocca N, Rigoni F, Valle LD, Bargelloni L (1999) Pseudopleurochloris antarctica gen. et sp. nov., a new coccoid Xanthophycean from pack-ice of Wood Bay (Ross Sea, Antarctica): ultrastructure, pigments and 18S rRNA gene sequence. Eur J Phycol 34(2):149–159.  https://doi.org/10.1080/09670269910001736202 CrossRefGoogle Scholar
  3. Apt KE, Clendennen SK, Powers DA, Grossman AR (1995) The gene family encoding the fucoxanthin chlorophyll proteins from the brown alga Macrocystis pyrifera. Mol Gen Genet 246(4):455–464.  https://doi.org/10.1007/bf00290449 CrossRefPubMedGoogle Scholar
  4. Busch A, Hippler M (2011) The structure and function of eukaryotic photosystem I. Biochim Biophys Acta Bioenergy 1807(8):864–877.  https://doi.org/10.1016/j.bbabio.2010.09.009 CrossRefGoogle Scholar
  5. Cotton TM, Van Duyne RP (1981) Characterization of bacteriochlorophyll interactions in vitro by resonance Raman spectroscopy. J Am Chem Soc 103(20):6020–6026.  https://doi.org/10.1021/ja00410a005 CrossRefGoogle Scholar
  6. Dokter AM, van Hemert MC, ‘t Velt CM, van der Hoef K, Lugtenburg J, Frank HA, Groenen EJJ (2002) Resonance Raman spectrum of all-trans-spheroidene: DFT analysis and isotope labeling. J Phys Chem A 106(41):9463–9469.  https://doi.org/10.1021/jp026164e CrossRefGoogle Scholar
  7. Dolganov NA, Bhaya D, Grossman AR (1995) Cyanobacterial protein with similarity to the chlorophyll a/b binding proteins of higher plants: evolution and regulation. Proc Natl Acad Sci 92(2):636–640.  https://doi.org/10.1073/pnas.92.2.636 CrossRefPubMedGoogle Scholar
  8. Durchan M, Tichý J, Litvín R, Šlouf V, Gardian Z, Hříbek P, Vácha F, Polívka T (2012) Role of carotenoids in light-harvesting processes in an antenna protein from the chromophyte Xanthonema debile. J Phys Chem B 116(30):8880–8889.  https://doi.org/10.1021/jp3042796 CrossRefPubMedGoogle Scholar
  9. Engelken J, Brinkmann H, Adamska I (2010) Taxonomic distribution and origins of the extended LHC (light-harvesting complex) antenna protein superfamily. BMC Evol Biol 10(1):1–15.  https://doi.org/10.1186/1471-2148-10-233 CrossRefGoogle Scholar
  10. Feiler U, Mattioli TA, Katheder I, Scheer H, Lutz M, Robert B (1994) Effects of vinyl substitutions on resonance Raman spectra of (bacterio)chlorophylls. J Raman Spectrosc 25(5):365–370.  https://doi.org/10.1002/jrs.1250250513 CrossRefGoogle Scholar
  11. Frank HA, Cua A, Chynwat V, Young A, Gosztola D, Wasielewski MR (1996) The lifetimes and energies of the first excited singlet states of diadinoxanthin and diatoxanthin: the role of these molecules in excess energy dissipation in algae. Biochim Biophys Acta Bioenergy 1277(3):243–252.  https://doi.org/10.1016/S0005-2728(96)00106-5 CrossRefGoogle Scholar
  12. Fujiwara M, Tasumi M (1986) Metal-sensitive bands in the Raman and infrared spectra of intact and metal-substituted chlorophyll a. J Phys Chem 90(22):5646–5650.  https://doi.org/10.1021/j100280a033 CrossRefGoogle Scholar
  13. Gall A, Pascal AA, Robert B (2015) Vibrational techniques applied to photosynthesis: resonance Raman and fluorescence line-narrowing. Biochim Biophys Acta Bioenergy 1847(1):12–18.  https://doi.org/10.1016/j.bbabio.2014.09.009 CrossRefGoogle Scholar
  14. Gardian Z, Tichý J, Vácha F (2011) Structure of PSI, PSII and antennae complexes from yellow-green alga Xanthonema debile. Photosynth Res 108(1):25–32.  https://doi.org/10.1007/s11120-011-9647-z CrossRefPubMedGoogle Scholar
  15. Gildenhoff N, Amarie S, Gundermann K, Beer A, Büchel C, Wachtveitl J (2010) Oligomerization and pigmentation dependent excitation energy transfer in fucoxanthin–chlorophyll proteins. Biochim Biophys Acta Bioenergy 1797(5):543–549.  https://doi.org/10.1016/j.bbabio.2010.01.024 CrossRefGoogle Scholar
  16. Gundermann K, Büchel C (2008) The fluorescence yield of the trimeric fucoxanthin–chlorophyll–protein FCPa in the diatom Cyclotella meneghiniana is dependent on the amount of bound diatoxanthin. Photosynth Res 95(2):229–235.  https://doi.org/10.1007/s11120-007-9262-1 CrossRefPubMedGoogle Scholar
  17. Herbstová M, Bína D, Koník P, Gardian Z, Vácha F, Litvín R (2015) Molecular basis of chromatic adaptation in pennate diatom Phaeodactylum tricornutum. Biochim Biophys Acta Bioenergy 1847(6):534–543.  https://doi.org/10.1016/j.bbabio.2015.02.016 CrossRefGoogle Scholar
  18. Hofmann E, Wrench PM, Sharples FP, Hiller RG, Welte W, Diederichs K (1996) Structural basis of light harvesting by carotenoids: peridinin-chlorophyll-protein from Amphidinium carterae. Science 272(5269):1788–1791.  https://doi.org/10.1126/science.272.5269.1788 CrossRefPubMedGoogle Scholar
  19. Jeffrey SW, Mantoura RFC, Wright SW, International Council of Scientific Unions. Scientific Committee on Oceanic Research (1997) Phytoplankton pigments in oceanography: guidelines to modern methods. UNESCO Publishing, ParisGoogle Scholar
  20. Khoroshyy P, Bína D, Gardian Z, Litvín R, Alster J, Pšenčík J (2017) Quenching of chlorophyll triplet states by carotenoids in algal light-harvesting complexes related to fucoxanthin-chlorophyll protein. Photosynth Res.  https://doi.org/10.1007/s11120-017-0416-5 PubMedCrossRefGoogle Scholar
  21. Koyama Y, Kito M, Takii T, Saiki K, Tsukida K, Yamashita J (1982) Configuration of the carotenoid in the reaction centers of photosynthetic bacteria. Comparison of the resonance Raman spectrum of the reaction center of Rhodopseudomonas sphaeroides G1C with those of cis-trans isomers of β-carotene. Biochim Biophys Acta Bioenergy 680(2):109–118.  https://doi.org/10.1016/0005-2728(82)90001-9 CrossRefGoogle Scholar
  22. Koyama Y, Takii T, Saiki K, Tsukida K (1983) Configuration of the carotenoid in the reaction centers of photosynthetic bacteria. 2: comparison of the resonance Raman lines of the reaction centers with those of the 14 different cis-trans isomers of β-carotene. Photobiochem Photobiophys 5:139–150Google Scholar
  23. Koyama Y, Takatsuka I, Nakata M, Tasumi M (1988) Raman and infrared spectra of the all-trans, 7-cis, 9-cis, 13-cis and 15-cis isomers of β-carotene: key bands distinguishing stretched or terminal-bent configurations form central-bent configurations. J Raman Spectrosc 19(1):37–49.  https://doi.org/10.1002/jrs.1250190107 CrossRefGoogle Scholar
  24. Koziol AG, Borza T, Ishida K-I, Keeling P, Lee RW, Durnford DG (2007) Tracing the evolution of the light-harvesting antennae in chlorophyll a/b-containing organisms. Plant Physiol 143(4):1802–1816.  https://doi.org/10.1104/pp.106.092536 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Lapouge K, Näveke A, Sturgis JN, Hartwich G, Renaud D, Simonin I, Lutz M, Scheer H, Robert B (1998) Non-bonding molecular factors influencing the stretching wavenumbers of the conjugated carbonyl groups of bacteriochlorophyll a. J Raman Spectrosc 29(10–11):977–981CrossRefGoogle Scholar
  26. Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In: Douce R, Packer L (eds) Methods in enzymology, vol 148. Academic Press, Amsterdam, pp 350–382Google Scholar
  27. Litvín R, Bína D, Herbstová M, Gardian Z (2016) Architecture of the light-harvesting apparatus of the eustigmatophyte alga Nannochloropsis oceanica. Photosynth Res 130(1):137–150.  https://doi.org/10.1007/s11120-016-0234-1 CrossRefPubMedGoogle Scholar
  28. Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gui L, An X, Chang W (2004) Crystal structure of spinach major light-harvesting complex at 2.72 A resolution. Nature 428(6980):287–292.  https://doi.org/10.1038/nature02373 CrossRefPubMedGoogle Scholar
  29. Llansola-Portoles MJ, Uragami C, Pascal AA, Bina D, Litvin R, Robert B (2016) Pigment structure in the FCP-like light-harvesting complex from Chromera velia. Biochim Biophys Acta Bioenergy 1857(11):1759–1765.  https://doi.org/10.1016/j.bbabio.2016.08.006 CrossRefGoogle Scholar
  30. Llansola-Portoles MJ, Litvin R, Ilioaia C, Pascal AA, Bina D, Robert B (2017a) Pigment structure in the violaxanthin–chlorophyll-a-binding protein VCP. Photosynth Res 134(1):51–58.  https://doi.org/10.1007/s11120-017-0407-6 CrossRefPubMedGoogle Scholar
  31. Llansola-Portoles MJ, Pascal AA, Robert B (2017b) Electronic and vibrational properties of carotenoids: from in vitro to in vivo. J R Soc Interface.  https://doi.org/10.1098/rsif.2017.0504 PubMedPubMedCentralCrossRefGoogle Scholar
  32. Llansola-Portoles MJ, Sobotka R, Kish E, Shukla MK, Pascal AA, Polívka T, Robert B (2017c) Twisting a β-carotene, an adaptive trick from nature for dissipating energy during photoprotection. J Biol Chem 292(4):1396–1403.  https://doi.org/10.1074/jbc.M116.753723 CrossRefPubMedGoogle Scholar
  33. Lutz M (1977) Antenna chlorophyll in photosynthetic membranes: A study by resonance Raman spectroscopy. Biochim Biophys Acta Bioenergy 460(3):408–430.  https://doi.org/10.1016/0005-2728(77)90081-0 CrossRefGoogle Scholar
  34. Lutz M, Szponarski W, Berger G, Robert B, Neumann J-M (1987) The stereoisomerization of bacterial, reaction-center-bound carotenoids revisited: an electronic absorption, resonance Raman and NMR study. Biochem Biophys Acta 894:423–433.  https://doi.org/10.1016/0005-2728(87)90121-6 CrossRefGoogle Scholar
  35. Macernis M, Sulskus J, Malickaja S, Robert B, Valkunas L (2014) Resonance Raman spectra and electronic transitions in carotenoids: a density functional theory study. J Phys Chem A 118(10):1817–1825.  https://doi.org/10.1021/jp406449c CrossRefPubMedGoogle Scholar
  36. Macernis M, Galzerano D, Sulskus J, Kish E, Kim Y-H, Koo S, Valkunas L, Robert B (2015) Resonance Raman spectra of carotenoid molecules: influence of methyl substitutions. J Phys Chem A 119(1):56–66.  https://doi.org/10.1021/jp510426m CrossRefPubMedGoogle Scholar
  37. Mendes-Pinto MM, Galzerano D, Telfer A, Pascal AA, Robert B, Ilioaia C (2013a) Mechanisms underlying carotenoid absorption in oxygenic photosynthetic proteins. J Biol Chem 288(26):18758–18765.  https://doi.org/10.1074/jbc.M112.423681 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Mendes-Pinto MM, Sansiaume E, Hashimoto H, Pascal AA, Gall A, Robert B (2013b) Electronic absorption and ground state structure of carotenoid molecules. J Phys Chem B 117(38):11015–11021.  https://doi.org/10.1021/jp309908r CrossRefPubMedGoogle Scholar
  39. Näveke A, Lapouge K, Sturgis JN, Hartwich G, Simonin I, Scheer H, Robert B (1997) Resonance Raman spectroscopy of metal-substituted bacteriochlorophylls: characterization of Raman bands sensitive to bacteriochlorin conformation. J Raman Spectrosc 28(8):599–604.  https://doi.org/10.1002/(SICI)1097-4555(199708)28:8 CrossRefGoogle Scholar
  40. Neilson JD, Durnford D (2010) Structural and functional diversification of the light-harvesting complexes in photosynthetic eukaryotes. Photosynth Res 106(1–2):57–71.  https://doi.org/10.1007/s11120-010-9576-2 CrossRefPubMedGoogle Scholar
  41. Papagiannakis E, van Stokkum HM, Fey IH, Büchel C, van Grondelle R (2005) Spectroscopic characterization of the excitation energy transfer in the fucoxanthin–chlorophyll protein of diatoms. Photosynth Res 86(1–2):241–250.  https://doi.org/10.1007/s11120-005-1003-8 CrossRefPubMedGoogle Scholar
  42. Pascal AA, Caron L, Rousseau B, Lapouge K, Duval JC, Robert B (1998) Resonance Raman spectroscopy of a light-harvesting protein from the brown alga Laminaria saccharina. Biochemistry 37(8):2450–2457.  https://doi.org/10.1021/bi9719657 CrossRefPubMedGoogle Scholar
  43. Pascal AA, Wacker U, Irrgang K-D, Horton P, Renger G, Robert B (2000) Pigment binding site properties of two photosystem II antenna proteins: a resonance Raman investigation. J Biol Chem 275(29):22031–22036.  https://doi.org/10.1074/jbc.M000658200 CrossRefPubMedGoogle Scholar
  44. Pendon ZD, Sullivan JO, van der Hoef I, Lugtenburg J, Cua A, Bocian DF, Birge RR, Frank HA (2005) Stereoisomers of carotenoids: spectroscopic properties of locked and unlocked cis-isomers of spheroidene. Photosynth Res 86(1):5–24.  https://doi.org/10.1007/s11120-005-1205-0 CrossRefPubMedGoogle Scholar
  45. Polívka T, van Stokkum IHM, Zigmantas D, van Grondelle R, Sundström V, Hiller RG (2006) Energy transfer in the major intrinsic light-harvesting complex from Amphidinium carterae. Biochemistry 45(28):8516–8526.  https://doi.org/10.1021/bi060265b CrossRefPubMedGoogle Scholar
  46. Premvardhan L, Bordes L, Beer A, Büchel C, Robert B (2009) Carotenoid structures and environments in trimeric and oligomeric fucoxanthin chlorophyll a/c2 proteins from resonance Raman spectroscopy. J Phys Chem B 113(37):12565–12574.  https://doi.org/10.1021/jp903029g CrossRefPubMedGoogle Scholar
  47. Rimai L, Heyde ME, Gill D (1973) Vibrational spectra of some carotenoids and related linear polyenes: Raman spectroscopic study. J Am Chem Soc 95(14):4493–4501.  https://doi.org/10.1021/ja00795a005 CrossRefPubMedGoogle Scholar
  48. Ruban AV, Berera R, Ilioaia C, van Stokkum IHM, Kennis JTM, Pascal AA, van Amerongen H, Robert B, Horton P, van Grondelle R (2007) Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature 450(7169):575–578.  https://doi.org/10.1038/nature06262 CrossRefPubMedGoogle Scholar
  49. Saito S, Tasumi M (1983) Normal-coordinate analysis of β-carotene isomers and assignments of the Raman and infrared bands. J Raman Spectrosc 14(5):310–321.  https://doi.org/10.1002/jrs.1250140504 CrossRefGoogle Scholar
  50. Ševčíková T, Horák A, Klimeš V, Zbránková V, Demir-Hilton E, Sudek S, Jenkins J, Schmutz J, Přibyl P, Fousek J, Vlček Č, Lang BF, Oborník M, Worden AZ, Eliáš M (2015) Updating algal evolutionary relationships through plastid genome sequencing: did alveolate plastids emerge through endosymbiosis of an ochrophyte? Sci Rep.  https://doi.org/10.1038/srep10134 PubMedPubMedCentralCrossRefGoogle Scholar
  51. Sparks LD, Medforth CJ, Park MS, Chamberlain JR, Ondrias MR, Senge MO, Smith KM, Shelnutt JA (1993) Metal dependence of the nonplanar distortion of octaalkyltetraphenylporphyrins. J Am Chem Soc 115(2):581–592.  https://doi.org/10.1021/ja00055a030 CrossRefGoogle Scholar
  52. Taylor DR (1967) The chemistry of allenes. Chem Rev 67(3):317–359.  https://doi.org/10.1021/cr60247a004 CrossRefGoogle Scholar
  53. Wilhelm C, Büchel C, Rousseau B (1988) The molecular organization of chlorophyll-protein complexes in the Xanthophycean alga Pleurochloris meiringensis. Biochim Biophys Acta Bioenergy 934(2):220–226.  https://doi.org/10.1016/0005-2728(88)90185-5 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Institute for Integrative Biology of the Cell (I2BC), CEA, CNRSUniversité Paris-SaclayGif-sur-Yvette cedexFrance
  2. 2.Biology CentreCzech Academy of SciencesCeske BudejoviceCzech Republic
  3. 3.Faculty of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic
  4. 4.Key Laboratory of Photobiology, Institute of BotanyChinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations