Advertisement

Evolution of protein transport to the chloroplast envelope membranes

  • Philip M. Day
  • Steven M. Theg
Review
  • 133 Downloads

Abstract

Chloroplasts are descendants of an ancient endosymbiotic cyanobacterium that lived inside a eukaryotic cell. They inherited the prokaryotic double membrane envelope from cyanobacteria. This envelope contains prokaryotic protein sorting machineries including a Sec translocase and relatives of the central component of the bacterial outer membrane β-barrel assembly module. As the endosymbiont was integrated with the rest of the cell, the synthesis of most of its proteins shifted from the stroma to the host cytosol. This included nearly all the envelope proteins identified so far. Consequently, the overall biogenesis of the chloroplast envelope must be distinct from cyanobacteria. Envelope proteins initially approach their functional locations from the exterior rather than the interior. In many cases, they have been shown to use components of the general import pathway that also serves the stroma and thylakoids. If the ancient prokaryotic protein sorting machineries are still used for chloroplast envelope proteins, their activities must have been modified or combined with the general import pathway. In this review, we analyze the current knowledge pertaining to chloroplast envelope biogenesis and compare this to bacteria.

Keywords

Chloroplast Endosymbiosis Envelope Protein sorting Transmembrane 

References

  1. Bae W, Lee YJ, Kim DH, Lee J, Kim S, Sohn EJ, Hwang I (2008) AKR2A-mediated import of chloroplast outer membrane proteins is essential for chloroplast biogenesis. Nat Cell Biol 10:220–227.  https://doi.org/10.1038/ncb1683 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Baldwin AJ, Wardle A, Patel R, Dudley P, Park SK, Twell D, Inoue K, Jarvis P (2005) A molecular-genetic study of the Arabidopsis Toc75 gene family. Plant Physiol 138:715–733.  https://doi.org/10.1104/pp.105.063289 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bolter B, Soll J (2016) Once upon a time—chloroplast protein import research from infancy to future. Chall Mol Plant 9:798–812.  https://doi.org/10.1016/j.molp.2016.04.014 CrossRefGoogle Scholar
  4. Bolter B, Soll J, Schulz A, Hinnah S, Wagner R (1998) Origin of a chloroplast protein importer. Proc Natl Acad Sci USA 95:15831–15836CrossRefPubMedCentralGoogle Scholar
  5. Bolter B, Soll J, Hill K, Hemmler R, Wagner R (1999) A rectifying ATP-regulated solute channel in the chloroplastic outer envelope from pea. EMBO J 18:5505–5516.  https://doi.org/10.1093/emboj/18.20.5505 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Breuers FK, Brautigam A, Weber AP (2011) The plastid outer envelope—a highly dynamic interface between plastid and cytoplasm. Front Plant Sci 2:97.  https://doi.org/10.3389/fpls.2011.00097 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Brink S, Fischer K, Klosgen RB, Flugge UI (1995) Sorting of nuclear-encoded chloroplast membrane proteins to the envelope and the thylakoid membrane. J Biol Chem 270:20808–20815CrossRefPubMedCentralGoogle Scholar
  8. Celedon JM, Cline K (2013) Intra-plastid protein trafficking: how plant cells adapted prokaryotic mechanisms to the eukaryotic condition. Biochim Biophys Acta 1833:341–351.  https://doi.org/10.1016/j.bbamcr.2012.06.028 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chen YL, Chen LJ, Li HM (2016) Polypeptide transport-associated domains of the Toc75 channel protein are located in the intermembrane space of chloroplasts. Plant Physiol 172:235–243.  https://doi.org/10.1104/pp.16.00919 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Day PM, Potter D, Inoue K (2014) Evolution and targeting of Omp85 homologs in the chloroplast outer envelope membrane. Front Plant Sci 5:535.  https://doi.org/10.3389/fpls.2014.00535 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Dhanoa PK, Richardson LG, Smith MD, Gidda SK, Henderson MP, Andrews DW, Mullen RT (2010) Distinct pathways mediate the sorting of tail-anchored proteins to the plastid outer envelope. PLoS ONE 5:e10098.  https://doi.org/10.1371/journal.pone.0010098 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Eckart K, Eichacker L, Sohrt K, Schleiff E, Heins L, Soll J (2002) A Toc75-like protein import channel is abundant in chloroplasts. EMBO Rep 3:557–562.  https://doi.org/10.1093/embo-reports/kvf110 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Endow JK, Singhal R, Fernandez DE, Inoue K (2015) Chaperone-assisted post-translational transport of plastidic type i signal peptidase 1. J Biol Chem 290:28778–28791.  https://doi.org/10.1074/jbc.M115.684829 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Endow JK, Rocha AG, Baldwin AJ, Roston RL, Yamaguchi T, Kamikubo H, Inoue K (2016) Polyglycine acts as a rejection signal for protein transport at the chloroplast envelope. PLoS ONE 11:e0167802.  https://doi.org/10.1371/journal.pone.0167802 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Facchinelli F, Weber AP (2011) The metabolite transporters of the plastid envelope: an update. Front Plant Sci 2:50.  https://doi.org/10.3389/fpls.2011.00050 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Fernandez DE (2018) Two paths diverged in the stroma: targeting to dual SEC translocase systems in chloroplasts. Photosynth Res.  https://doi.org/10.1007/s11120-018-0541-9 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Firlej-Kwoka E, Strittmatter P, Soll J, Bolter B (2008) Import of preproteins into the chloroplast inner envelope membrane. Plant Mol Biol 68:505–519.  https://doi.org/10.1007/s11103-008-9387-4 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Frain KM, Gangl D, Jones A, Zedler JA, Robinson C (2016) Protein translocation and thylakoid biogenesis in cyanobacteria. Biochim Biophys Acta 1857:266–273.  https://doi.org/10.1016/j.bbabio.2015.08.010 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Froehlich JE, Keegstra K (2011) The role of the transmembrane domain in determining the targeting of membrane proteins to either the inner envelope or thylakoid membrane. Plant J 68:844–856.  https://doi.org/10.1111/j.1365-313X.2011.04735.x CrossRefPubMedPubMedCentralGoogle Scholar
  20. Glaser S, van Dooren GG, Agrawal S, Brooks CF, McFadden GI, Striepen B, Higgins MK (2012) Tic22 is an essential chaperone required for protein import into the apicoplast. J Biol Chem 287:39505–39512.  https://doi.org/10.1074/jbc.M112.405100 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Goetze TA, Philippar K, Ilkavets I, Soll J, Wagner R (2006) OEP37 is a new member of the chloroplast outer membrane ion channels. J Biol Chem 281:17989–17998.  https://doi.org/10.1074/jbc.M600700200 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Harsman A et al (2016) OEP40, a regulated glucose-permeable beta-barrel solute channel in the chloroplast outer envelope membrane. J Biol Chem 291:17848–17860.  https://doi.org/10.1074/jbc.M115.712398 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Heinz E, Selkrig J, Belousoff MJ, Lithgow T (2015) Evolution of the translocation and assembly module (TAM). Genome Biol Evol 7:1628–1643.  https://doi.org/10.1093/gbe/evv097 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hirano T et al (2016) Moss chloroplasts are surrounded by a peptidoglycan wall containing D-amino acids. Plant Cell 28:1521–1532.  https://doi.org/10.1105/tpc.16.00104 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hofmann NR, Theg SM (2005a) Chloroplast outer membrane protein targeting and insertion. Trends Plant Sci 10:450–457.  https://doi.org/10.1016/j.tplants.2005.07.009 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hofmann NR, Theg SM (2005b) Protein- and energy-mediated targeting of chloroplast outer envelope membrane proteins. Plant J 44:917–927.  https://doi.org/10.1111/j.1365-313X.2005.02571.x CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hoiczyk E, Hansel A (2000) Cyanobacterial cell walls: news from an unusual prokaryotic envelope. J Bacteriol 182:1191–1199CrossRefPubMedCentralGoogle Scholar
  28. Hsu SC, Belmonte MF, Harada JJ, Inoue K (2010) Indispensable roles of plastids in Arabidopsis thaliana embryogenesis. Curr Genom 11:338–349.  https://doi.org/10.2174/138920210791616716 CrossRefGoogle Scholar
  29. Hsu SC, Nafati M, Inoue K (2012) OEP80, an essential protein paralogous to the chloroplast protein translocation channel Toc75, exists as a 70-kD protein in the Arabidopsis thaliana chloroplast outer envelope. Plant Mol Biol 78:147–158.  https://doi.org/10.1007/s11103-011-9853-2 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Hsueh YC, Flinner N, Gross LE, Haarmann R, Mirus O, Sommer MS, Schleiff E (2014) Chloroplast outer envelope protein P39 in Arabidopsis thaliana belongs to the Omp85 protein family. Proteins 85:1391–1401.  https://doi.org/10.1002/prot.24725 CrossRefGoogle Scholar
  31. Hurlock AK, Roston RL, Wang K, Benning C (2014) Lipid trafficking in plant cells. Traffic 15:915–932.  https://doi.org/10.1111/tra.12187 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Inoue K (2011) Emerging roles of the chloroplast outer envelope membrane. Trends Plant Sci 16:550–557.  https://doi.org/10.1016/j.tplants.2011.06.005 CrossRefPubMedGoogle Scholar
  33. Inoue K, Keegstra K (2003) A polyglycine stretch is necessary for proper targeting of the protein translocation channel precursor to the outer envelope membrane of chloroplasts. Plant J 34:661–669CrossRefGoogle Scholar
  34. Inoue K, Potter D (2004) The chloroplastic protein translocation channel Toc75 and its paralog OEP80 represent two distinct protein families and are targeted to the chloroplastic outer envelope by different mechanisms. Plant J 39:354–365.  https://doi.org/10.1111/j.1365-313X.2004.02135.x CrossRefPubMedGoogle Scholar
  35. Inoue K, Baldwin AJ, Shipman RL, Matsui K, Theg SM, Ohme-Takagi M (2005) Complete maturation of the plastid protein translocation channel requires a type I signal peptidase. J Cell Biol 171:425–430.  https://doi.org/10.1083/jcb.200506171 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Iqbal H, Kenedy MR, Lybecker M, Akins DR (2016) The TamB ortholog of Borrelia burgdorferi interacts with the beta-barrel assembly machine (BAM) complex protein BamA. Mol Microbiol 102:757–774.  https://doi.org/10.1111/mmi.13492 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kessler F, Blobel G, Patel HA, Schnell DJ (1994) Identification of two GTP-binding proteins in the chloroplast protein import machinery. Science 266:1035–1039CrossRefGoogle Scholar
  38. Kikuchi S et al (2013) Uncovering the protein translocon at the chloroplast inner envelope membrane. Science 339:571–574.  https://doi.org/10.1126/science.1229262 CrossRefPubMedGoogle Scholar
  39. Kim DH et al (2014) An ankyrin repeat domain of AKR2 drives chloroplast targeting through coincident binding of two chloroplast lipids. Dev Cell 30:598–609.  https://doi.org/10.1016/j.devcel.2014.07.026 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kirchberger S, Tjaden J, Neuhaus HE (2008) Characterization of the Arabidopsis Brittle1 transport protein and impact of reduced activity on plant metabolism. Plant J 56:51–63.  https://doi.org/10.1111/j.1365-313X.2008.03583.x CrossRefPubMedGoogle Scholar
  41. Klasek L, Inoue K (2016) Dual protein localization to the envelope and thylakoid membranes within the chloroplast. Int Rev Cell Mol Biol 323:231–263.  https://doi.org/10.1016/bs.ircmb.2015.12.008 CrossRefPubMedGoogle Scholar
  42. Knight JS, Gray JC (1995) The N-terminal hydrophobic region of the mature phosphate translocator is sufficient for targeting to the chloroplast inner envelope membrane. Plant Cell 7:1421–1432.  https://doi.org/10.1105/tpc.7.9.1421 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Kouranov A, Chen X, Fuks B, Schnell DJ (1998) Tic20 and Tic22 are new components of the protein import apparatus at the chloroplast inner envelope membrane. J Cell Biol 143:991–1002CrossRefPubMedCentralGoogle Scholar
  44. Kouranov A, Wang H, Schnell DJ (1999) Tic22 is targeted to the intermembrane space of chloroplasts by a novel pathway. J Biol Chem 274:25181–25186CrossRefGoogle Scholar
  45. Kuhn A, Koch HG, Dalbey RE (2017) Targeting and insertion of membrane proteins. EcoSal Plus.  https://doi.org/10.1128/ecosalplus.ESP-0012-2016 CrossRefPubMedGoogle Scholar
  46. Lee DW, Hwang I (2018) Evolution and design principles of the diverse chloroplast transit peptides. Mol Cells 41:161–167.  https://doi.org/10.14348/molcells.2018.0033 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Lee YJ, Kim DH, Kim YW, Hwang I (2001) Identification of a signal that distinguishes between the chloroplast outer envelope membrane and the endomembrane system in vivo. Plant Cell 13:2175–2190CrossRefPubMedCentralGoogle Scholar
  48. Lee J, Kim DH, Hwang I (2014) Specific targeting of proteins to outer envelope membranes of endosymbiotic organelles, chloroplasts, and mitochondria. Front Plant Sci 5:173.  https://doi.org/10.3389/fpls.2014.00173 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Li HM, Chen LJ (1996) Protein targeting and integration signal for the chloroplastic outer envelope membrane. Plant Cell 8:2117–2126CrossRefPubMedCentralGoogle Scholar
  50. Li H, Chen LJ (1997) A novel chloroplastic outer membrane-targeting signal that functions at both termini of passenger polypeptides. J Biol Chem 272:10968–10974CrossRefGoogle Scholar
  51. Li M, Schnell DJ (2006) Reconstitution of protein targeting to the inner envelope membrane of chloroplasts. J Cell Biol 175:249–259.  https://doi.org/10.1083/jcb.200605162 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Li HM, Moore T, Keegstra K (1991) Targeting of proteins to the outer envelope membrane uses a different pathway than transport into chloroplasts. Plant Cell 3:709–717CrossRefPubMedCentralGoogle Scholar
  53. Li HM, Sullivan TD, Keegstra K (1992) Information for targeting to the chloroplastic inner envelope membrane is contained in the mature region of the maize Bt1-encoded protein. J Biol Chem 267:18999–19004PubMedPubMedCentralGoogle Scholar
  54. Li Y, Singhal R, Taylor IW, McMinn PH, Chua XY, Cline K, Fernandez DE (2015) The Sec2 translocase of the chloroplast inner envelope contains a unique and dedicated SECE2 component. Plant J 84:647–658.  https://doi.org/10.1111/tpj.13028 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Li Y, Martin JR, Aldama GA, Fernandez DE, Cline K (2017) Identification of putative substrates of SEC2, a chloroplast inner envelope translocase. Plant Physiol 173:2121–2137.  https://doi.org/10.1104/pp.17.00012 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Lubeck J, Heins L, Soll J (1997) A nuclear-coded chloroplastic inner envelope membrane protein uses a soluble sorting intermediate upon import into the organelle. J Cell Biol 137:1279–1286CrossRefPubMedCentralGoogle Scholar
  57. Matsushima R, Maekawa M, Kusano M, Kondo H, Fujita N, Kawagoe Y, Sakamoto W (2014) Amyloplast-localized SUBSTANDARD STARCH GRAIN4 protein influences the size of starch grains in rice endosperm. Plant Physiol 164:623–636.  https://doi.org/10.1104/pp.113.229591 CrossRefPubMedGoogle Scholar
  58. Miege C et al (1999) Biochemical and topological properties of type A MGDG synthase, a spinach chloroplast envelope enzyme catalyzing the synthesis of both prokaryotic and eukaryotic MGDG. Eur J Biochem 265:990–1001CrossRefGoogle Scholar
  59. Nakai M, Goto A, Nohara T, Sugita D, Endo T (1994) Identification of the SecA protein homolog in pea chloroplasts and its possible involvement in thylakoidal protein transport. J Biol Chem 269:31338–31341PubMedGoogle Scholar
  60. Nishimura K, Kato Y, Sakamoto W (2016) Chloroplast proteases: updates on proteolysis within and across suborganellar compartments. Plant Physiol 171:2280–2293.  https://doi.org/10.1104/pp.16.00330 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Okawa K et al (2014) Targeting of a polytopic membrane protein to the inner envelope membrane of chloroplasts in vivo involves multiple transmembrane segments. J Exp Bot 65:5257–5265.  https://doi.org/10.1093/jxb/eru290 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Osteryoung KW, Pyke KA (2014) Division and dynamic morphology of plastids. Annu Rev Plant Biol 65:443–472.  https://doi.org/10.1146/annurev-arplant-050213-035748 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Paila YD, Richardson LG, Inoue H, Parks ES, McMahon J, Inoue K, Schnell DJ (2016) Multi-functional roles for the polypeptide transport associated domains of Toc75 in chloroplast protein import. Elife.  https://doi.org/10.7554/eLife.12631 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Patel R, Hsu SC, Bedard J, Inoue K, Jarvis P (2008) The Omp85-related chloroplast outer envelope protein OEP80 is essential for viability in Arabidopsis. Plant Physiol 148:235–245.  https://doi.org/10.1104/pp.108.122754 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Pohlmeyer K, Soll J, Grimm R, Hill K, Wagner R (1998) A high-conductance solute channel in the chloroplastic outer envelope from pea. Plant Cell 10:1207–1216CrossRefPubMedCentralGoogle Scholar
  66. Reumann S, Keegstra K (1999) The endosymbiotic origin of the protein import machinery of chloroplastic envelope membranes. Trends Plant Sci 4:302–307CrossRefPubMedCentralGoogle Scholar
  67. Reumann S, Davila-Aponte J, Keegstra K (1999) The evolutionary origin of the protein-translocating channel of chloroplastic envelope membranes: identification of a cyanobacterial homolog. Proc Natl Acad Sci USA 96:784–789CrossRefPubMedCentralGoogle Scholar
  68. Reumann S, Inoue K, Keegstra K (2005) Evolution of the general protein import pathway of plastids (review). Mol Membr Biol 22:73–86CrossRefPubMedCentralGoogle Scholar
  69. Rollauer SE, Sooreshjani MA, Noinaj N, Buchanan SK (2015) Outer membrane protein biogenesis in Gram-negative bacteria Philos Trans R Soc Lond B.  https://doi.org/10.1098/rstb.2015.0023 CrossRefGoogle Scholar
  70. Roston RL, Wang K, Kuhn LA, Benning C (2014) Structural determinants allowing transferase activity in SENSITIVE TO FREEZING 2, classified as a family I glycosyl hydrolase. J Biol Chem 289:26089–26106.  https://doi.org/10.1074/jbc.M114.576694 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Schleiff E, Eichacker LA, Eckart K, Becker T, Mirus O, Stahl T, Soll J (2003) Prediction of the plant beta-barrel proteome: a case study of the chloroplast outer envelope. Protein Sci 12:748–759.  https://doi.org/10.1110/ps.0237503 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Schnell DJ, Kessler F, Blobel G (1994) Isolation of components of the chloroplast protein import machinery. Science 266:1007–1012CrossRefPubMedCentralGoogle Scholar
  73. Seedorf M, Waegemann K, Soll J (1995) A constituent of the chloroplast import complex represents a new type of GTP-binding protein. Plant J 7:401–411CrossRefPubMedCentralGoogle Scholar
  74. Selkrig J et al (2012) Discovery of an archetypal protein transport system in bacterial outer membranes. Nat Struct Mol Biol 19:506–510, S501.  https://doi.org/10.1038/nsmb.2261 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Shi LX, Theg SM (2013) The chloroplast protein import system: from algae to trees. Biochim Biophys Acta 1833:314–331.  https://doi.org/10.1016/j.bbamcr.2012.10.002 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Singhal R, Fernandez DE (2017) Sorting of SEC translocase SCY components to different membranes in chloroplasts. J Exp Bot.  https://doi.org/10.1093/jxb/erx318 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Skalitzky CA et al (2011) Plastids contain a second sec translocase system with essential functions. Plant Physiol 155:354–369.  https://doi.org/10.1104/pp.110.166546 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Sommer MS et al (2011) Chloroplast Omp85 proteins change orientation during evolution. Proc Natl Acad Sci USA 108:13841–13846.  https://doi.org/10.1073/pnas.1108626108 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Topel M, Ling Q, Jarvis P (2012) Neofunctionalization within the Omp85 protein superfamily during chloroplast evolution. Plant Signal Behav 7:161–164.  https://doi.org/10.4161/psb.18677 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Tranel PJ, Keegstra K (1996) A novel, bipartite transit peptide targets OEP75 to the outer membrane of the chloroplastic envelope. Plant Cell 8:2093–2104.  https://doi.org/10.1105/tpc.8.11.2093 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Tranel PJ, Froehlich J, Goyal A, Keegstra K (1995) A component of the chloroplastic protein import apparatus is targeted to the outer envelope membrane via a novel pathway. EMBO J 14:2436–2446CrossRefPubMedCentralGoogle Scholar
  82. Tripp J, Inoue K, Keegstra K, Froehlich JE (2007) A novel serine/proline-rich domain in combination with a transmembrane domain is required for the insertion of AtTic40 into the inner envelope membrane of chloroplasts. Plant J 52:824–838.  https://doi.org/10.1111/j.1365-313X.2007.03279.x CrossRefPubMedPubMedCentralGoogle Scholar
  83. Tripp J et al (2012) Structure and conservation of the periplasmic targeting factor Tic22 protein from plants and cyanobacteria. J Biol Chem 287:24164–24173.  https://doi.org/10.1074/jbc.M112.341644 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Tsai LY, Tu SL, Li HM (1999) Insertion of at Toc34 into the chloroplastic outer membrane is assisted by at least two proteinaceous components in the import system. J Biol Chem 274:18735–18740CrossRefPubMedCentralGoogle Scholar
  85. Tu SL, Chen LJ, Smith MD, Su YS, Schnell DJ, Li HM (2004) Import pathways of chloroplast interior proteins and the outer-membrane protein OEP14 converge at Toc 75. Plant Cell 16:2078–2088.  https://doi.org/10.1105/tpc.104.023952 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Tyra HM, Linka M, Weber AP, Bhattacharya D (2007) Host origin of plastid solute transporters in the first photosynthetic eukaryotes. Genome Biol 8:R212.  https://doi.org/10.1186/gb-2007-8-10-r212 CrossRefPubMedPubMedCentralGoogle Scholar
  87. Tzafrir I et al (2004) Identification of genes required for embryo development in Arabidopsis. Plant Physiol 135:1206–1220.  https://doi.org/10.1104/pp.104.045179 CrossRefPubMedPubMedCentralGoogle Scholar
  88. VanderVere PS, Bennett TM, Oblong JE, Lamppa GK (1995) A chloroplast processing enzyme involved in precursor maturation shares a zinc-binding motif with a recently recognized family of metalloendopeptidases. Proc Natl Acad Sci USA 92:7177–7181CrossRefPubMedCentralGoogle Scholar
  89. Viana AA, Li M, Schnell DJ (2010) Determinants for stop-transfer and post-import pathways for protein targeting to the chloroplast inner envelope membrane. J Biol Chem 285:12948–12960.  https://doi.org/10.1074/jbc.M110.109744 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Vitha S, Froehlich JE, Koksharova O, Pyke KA, van Erp H, Osteryoung KW (2003) ARC6 is a J-domain plastid division protein and an evolutionary descendant of the cyanobacterial cell division protein Ftn 2. Plant Cell 15:1918–1933CrossRefPubMedCentralGoogle Scholar
  91. Vojta L, Soll J, Bolter B (2007) Protein transport in chloroplasts—targeting to the intermembrane space. FEBS J 274:5043–5054.  https://doi.org/10.1111/j.1742-4658.2007.06023.x CrossRefPubMedPubMedCentralGoogle Scholar
  92. Wallas TR, Smith MD, Sanchez-Nieto S, Schnell DJ (2003) The roles of toc34 and toc75 in targeting the toc159 preprotein receptor to chloroplasts. J Biol Chem 278:44289–44297.  https://doi.org/10.1074/jbc.M307873200 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Wang Z, Xu C, Benning C (2012) TGD4 involved in endoplasmic reticulum-to-chloroplast lipid trafficking is a phosphatidic acid binding protein. Plant J 70:614–623.  https://doi.org/10.1111/j.1365-313X.2012.04900.x CrossRefPubMedPubMedCentralGoogle Scholar
  94. Webb CT, Heinz E, Lithgow T (2012) Evolution of the beta-barrel assembly machinery. Trends Microbiol 20:612–620.  https://doi.org/10.1016/j.tim.2012.08.006 CrossRefPubMedPubMedCentralGoogle Scholar
  95. Wu C, Ko K (1993) Identification of an uncleavable targeting signal in the 70-kilodalton spinach chloroplast outer envelope membrane protein. J Biol Chem 268:19384–19391PubMedPubMedCentralGoogle Scholar
  96. Yuan J, Henry R, McCaffery M, Cline K (1994) SecA homolog in protein transport within chloroplasts: evidence for endosymbiont-derived sorting. Science 266:796–798CrossRefPubMedCentralGoogle Scholar
  97. Yuzawa Y et al (2012) Phylogeny of galactolipid synthase homologs together with their enzymatic analyses revealed a possible origin and divergence time for photosynthetic membrane biogenesis. DNA Res 19:91–102.  https://doi.org/10.1093/dnares/dsr044 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Plant BiologyUniversity of California at DavisDavisUSA

Personalised recommendations