Photosynthesis Research

, Volume 136, Issue 1, pp 17–30 | Cite as

Photoprotection in intact cells of photosynthetic bacteria: quenching of bacteriochlorophyll fluorescence by carotenoid triplets

Original Article
  • 224 Downloads

Abstract

Upon high light excitation in photosynthetic bacteria, various triplet states of pigments can accumulate leading to harmful effects. Here, the generation and lifetime of flash-induced carotenoid triplets (3Car) have been studied by observation of the quenching of bacteriochlorophyll (BChl) fluorescence in different strains of photosynthetic bacteria including Rvx. gelatinosus (anaerobic and semianaerobic), Rsp. rubrum, Thio. roseopersicina, Rba. sphaeroides 2.4.1 and carotenoid- and cytochrome-deficient mutants Rba. sphaeroides Ga, R-26, and cycA, respectively. The following results were obtained: (1) 3Car quenching is observed during and not exclusively after the photochemical rise of the fluorescence yield of BChl indicating that the charge separation in the reaction center (RC) and the carotenoid triplet formation are not consecutive but parallel processes. (2) The photoprotective function of 3Car is not limited to the RC only and can be described by a model in which the carotenoids are distributed in the lake of the BChl pigments. (3) The observed lifetime of 3Car in intact cells is the weighted average of the lifetimes of the carotenoids with various numbers of conjugated double bonds in the bacterial strain. (4) The lifetime of 3Car measured in the light is significantly shorter (1–2 μs) than that measured in the dark (2–10 μs). The difference reveals the importance of the dynamics of 3Car before relaxation. The results will be discussed not only in terms of energy levels of the 3Car but also in terms of the kinetics of transitions among different sublevels in the excited triplet state of the carotenoid.

Keywords

Bacterial photosynthesis Intact cells Fluorescence induction Triplet quenching Lake model 

Notes

Acknowledgements

This work was supported by GINOP-2.3.2-15-2016-00001, OTKA-K 112688, COST (CM1306), EFOP-3.6.2-16-2017, and Photosynthesis - Life from Light—Foundation (Hungary).

References

  1. Alden RG, Johnson E, Nagarajan V, Parson WW, Law CJ, Cogdell RG (1997) Calculations of spectroscopic properties of the LH2 bacteriochlorophyll—protein antenna complex from Rhodopseudomonas acidophila. J Phys Chem B 101(23):4667–4680. doi: 10.1021/Jp970005r CrossRefGoogle Scholar
  2. Angerhofer A, Bornhauser F, Gall A, Cogdell RJ (1995) Optical and optically detected magnetic-resonance investigation on purple photosynthetic bacterial antenna complexes. Chem Phys 194(2–3):259–274. doi: 10.1016/0301-0104(95)00022-G CrossRefGoogle Scholar
  3. Asztalos E, Sipka G, Maróti P (2015) Fluorescence relaxation in intact cells of photosynthetic bacteria: donor and acceptor side limitations of reopening of the reaction center. Photosynth Res 124(1):31–44. doi: 10.1007/s11120-014-0070-0 PubMedCrossRefGoogle Scholar
  4. Bagyinka C, Kovacs KL, Rak E (1981) Localization of hydrogenase in the photosynthetic membrane of Thiocapsa roseopersicina. Acta Biochimica et Biophysica Hungarica 16(3–4):235–235Google Scholar
  5. Bautista JA, Chynwat V, Cua A, Jansen FJ, Lugtenburg J, Gosztola D, Wasielewski MR, Frank HA (1998) The spectroscopic and photochemical properties of locked-15,15 ‘-cis-spheroidene in solution and incorporated into the reaction center of Rhodobacter sphaeroides R-26.1. Photosynth Res 55(1):49–65. doi: 10.1023/A:1005955425420 CrossRefGoogle Scholar
  6. Bensasson R, Land EJ, Maudinas B (1976) Triplet-states of carotenoids from photosynthetic bacteria studied by nanosecond ultraviolet and electron pulse irradiation. Photochem Photobiol 23(3):189–193. doi: 10.1111/j.1751-1097.1976.tb07240.x PubMedCrossRefGoogle Scholar
  7. Borland CF, Cogdell RJ, Land EJ, Truscott TG (1989) Bacteriochlorophyll α-triplet state and its interactions with bacterial carotenoids and oxygen. J Photochem Photobiol B 3(2):237–245. doi: 10.1016/1011-1344(89)80065-X CrossRefGoogle Scholar
  8. Breton J, Geacintov NE, Swenberg CE (1979) Quenching of fluorescence by triplet excited-states in chloroplasts. Biochim Biophys Acta 548(3):616–635. doi: 10.1016/0005-2728(79)90069-0 PubMedCrossRefGoogle Scholar
  9. Chi SC, Mothersole DJ, Dilbeck P, Niedzwiedzki DM, Zhang H, Qian P, Vasilev C, Grayson KJ, Jackson PJ, Martin EC, Li Y, Holten D, Hunter CN (2015) Assembly of functional photosystem complexes in Rhodobacter sphaeroides incorporating carotenoids from the spirilloxanthin pathway. Biochim Biophys Acta Bioenerg 1847(2):189–201. doi: 10.1016/j.bbabio.2014.10.004 CrossRefGoogle Scholar
  10. Claes H, Nakayama TOM (1959) Das photooxydative Ausbleichen von Chlorophyll in vitro in Gegenwart von Carotinen mit verschiedenen Chromophoren Gruppen. Z Naturforsch 14b:746–747Google Scholar
  11. Cogdell RJ (1978) Carotenoids in photosynthesis. Philos Trans R Soc B 284(1002):569–579. doi: 10.1098/rstb.1978.0090 CrossRefGoogle Scholar
  12. Cogdell RJ (1986) Light-harvesting complexes in purple photosynthetic bacteria. In: Staehelin IA, Arntzen CJ (eds) Photosynthesis III, vol 19. Encyclopedia of plant physiology. Springer, Berlin, pp 252–259. doi: 10.1007/978-3-642-70936-4 Google Scholar
  13. Cogdell RJ, Frank HA (1987) How carotenoids function in photosynthetic bacteria. Biochim Biophys Acta 895(2):63–79. doi: 10.1016/S0304-4173(87)80008-3 PubMedCrossRefGoogle Scholar
  14. Cogdell RJ, Hipkins MF, Macdonald W, Truscott TG (1981) Energy-transfer between the carotenoid and the bacteriochlorophyll within the B800–850 light-harvesting pigment-protein complex of Rhodopseudomonas sphaeroides. Biochim Biophys Acta 634(1):191–202. doi: 10.1016/0005-2728(81)90138-9 PubMedCrossRefGoogle Scholar
  15. Cogdell RJ, Howard TD, Bittl R, Schlodder E, Geisenheimer I, Lubitz W (2000) How carotenoids protect bacterial photosynthesis. Philos Trans R Soc B 355(1402):1345–1349. doi: 10.1098/rstb.2000.0696 CrossRefGoogle Scholar
  16. Cogdell RJ, Gardiner AT, Roszak AW, Law CJ, Southall J, Isaacs NW (2004) Rings, ellipses and horseshoes: how purple bacteria harvest solar energy. Photosynth Res 81(3):207–214. doi: 10.1023/B:PRES.0000036883.56959.a9 PubMedCrossRefGoogle Scholar
  17. Damjanovic A, Ritz T, Schulten K (2000) Excitation energy trapping by the reaction center of Rhodobacter sphaeroides. Int J Quantum Chem 77(1):139–151. doi: 10.1002/(SICI)1097-461X(2000)77:1<139::AID-QUA13>3.0.CO;2-S CrossRefGoogle Scholar
  18. Daviso E, Prakash S, Alia A, Gast P, Neugebauer J, Jeschke G, Matysik J (2009) The electronic structure of the primary electron donor of reaction centers of purple bacteria at atomic resolution as observed by photo-CIDNP C-13 NMR. Proc Natl Acad Sci USA 106(52):22281–22286. doi: 10.1073/pnas.0908608106 PubMedPubMedCentralCrossRefGoogle Scholar
  19. de Rivoyre M, Ginet N, Bouyer P, Lavergne J (2010) Excitation transfer connectivity in different purple bacteria: a theoretical and experimental study. Biochim Biophys Acta 1797(11):1780–1794. doi: 10.1016/j.bbabio.2010.07.011 PubMedCrossRefGoogle Scholar
  20. Englman R, Jortner J (1970) The energy gap law for radiationless transitions in large molecules. Mol Phys 18(2):145–164. doi: 10.1080/00268977000100171 CrossRefGoogle Scholar
  21. Farhoosh R, Chynwat V, Gebhard R, Lugtenburg J, Frank HA (1994) Triplet energy-transfer between bacteriochlorophyll and carotenoids in B850 light-harvesting complexes of Rhodobacter sphaeroides R-26.1. Photosynth Res 42(2):157–166. doi: 10.1007/Bf02187126 PubMedCrossRefGoogle Scholar
  22. Farhoosh R, Chynwat V, Gebhard R, Lugtenburg J, Frank HA (1997) Triplet energy transfer between the primary donor and carotenoids in Rhodobacter sphaeroides R-26.1 reaction centers incorporated with spheroidene analogs having different extents of π-electron conjugation. Photochem Photobiol 66(1):97–104. doi: 10.1111/j.1751-1097.1997.tb03144.x PubMedCrossRefGoogle Scholar
  23. Foote CS, Denny RW (1968) Chemistry of singlet oxygen. VII. Quenching by β-carotene. J Am Chem Soc 90:6233–6235. doi: 10.1021/ja01024a061 CrossRefGoogle Scholar
  24. Formaggio E, Cinque G, Bassi R (2001) Functional architecture of the major light-harvesting complex from higher plants. J Mol Biol 314(5):1157–1166. doi: 10.1006/jmbi.2000.5179 PubMedCrossRefGoogle Scholar
  25. Fraser NJ, Hashimoto H, Cogdell RJ (2001) Carotenoids and bacterial photosynthesis: the story so far…. Photosynth Res 70(3):249–256. doi: 10.1023/A:1014715114520 PubMedCrossRefGoogle Scholar
  26. Gall A, Berera R, Alexandre MT, Pascal AA, Bordes L, Mendes-Pinto MM, Andrianambinintsoa S, Stoitchkova KV, Marin A, Valkunas L, Horton P, Kennis JT, van Grondelle R, Ruban A, Robert B (2011) Molecular adaptation of photoprotection: triplet states in light-harvesting proteins. Biophys J 101(4):934–942. doi: 10.1016/j.bpj.2011.05.057 PubMedPubMedCentralCrossRefGoogle Scholar
  27. Gall A, Ilioaia C, Kruger TP, Novoderezhkin VI, Robert B, van Grondelle R (2015) Conformational switching in a light-harvesting protein as followed by single-molecule spectroscopy. Biophys J 108(11):2713–2720. doi: 10.1016/j.bpj.2015.04.017 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Glaeser J, Klug G (2005) Photo-oxidative stress in Rhodobacter sphaeroides: protective role of carotenoids and expression of selected genes. Microbiology 151:1927–1938. doi: 10.1099/mic.0.27789-0 PubMedCrossRefGoogle Scholar
  29. Gradinaru CC, Kennis JTM, Papagiannakis E, van Stokkum IHM, Cogdell RJ, Fleming GR, Niederman RA, van Grondelle R (2001) An unusual pathway of excitation energy deactivation in carotenoids: singlet-to-triplet conversion on an ultrafast timescale in a photosynthetic antenna. Proc Natl Acad Sci USA 98(5):2364–2369. doi: 10.1073/pnas.051501298 PubMedPubMedCentralCrossRefGoogle Scholar
  30. Griffiths M, Sistrom WR, Cohenbazire G, Stanier RY, Calvin M (1955) Function of carotenoids in photosynthesis. Nature 176(4495):1211–1215. doi: 10.1038/1761211a0 PubMedCrossRefGoogle Scholar
  31. Hashimoto H, Fujii R, Yanagi K, Kusumoto T, Gardiner AT, Cogdell RJ, Roszak AW, Issacs NW, Pendon Z, Niedzwiedski D, Frank HA (2006) Structures and functions of carotenoids bound to reaction centers from purple photosynthetic bacteria. Pure Appl Chem 78(8):1505–1518. doi: 10.1351/pac200678081505 CrossRefGoogle Scholar
  32. Hawthornthwaite AM, Cogdell RJ (1991) Bacteriochlorophyll-binding proteins. In: Scheer H (ed) The Chlorophylls. CRC Press Inc., Boca Raton, pp 493–528Google Scholar
  33. Hess S, Chachisvilis M, Timpmann K, Jones MR, Fowler GJS, Hunter CN, Sundstrom V (1995) Temporally and spectrally resolved subpicosecond energy transfer within the peripheral antenna complex (LH2) and from LH2 to the core antenna complex in photosynthetic purple bacteria. Proc Natl Acad Sci USA 92(26):12333–12337. doi: 10.1073/pnas.92.26.12333 PubMedPubMedCentralCrossRefGoogle Scholar
  34. Hunter CN, Pennoyer JD, Sturgis JN, Farrelly D, Niederman RA (1988) Oligomerization states and associations of light-harvesting pigment protein complexes of Rhodobacter sphaeroides as analyzed by lithium dodecyl-sulfate polyacrylamide-gel electrophoresis. Biochemistry 27(9):3459–3467. doi: 10.1021/bi00409a050 CrossRefGoogle Scholar
  35. Kakitani Y, Fujii R, Koyama Y, Nagae H, Walker L, Salter B, Angerhofer A (2006) Triplet-state conformational changes in 15-cis-spheroidene bound to the reaction center from Rhodobacter sphaeroides 2.4.1 as revealed by time-resolved EPR spectroscopy: strengthened hypothetical mechanism of triplet-energy dissipation. BioChemistry 45(7):2053–2062. doi: 10.1021/bi0511538 PubMedCrossRefGoogle Scholar
  36. Kakitani Y, Akahane J, Ishii H, Sogabe H, Nagae H, Koyama Y (2007a) Conjugation-length dependence of the T1 lifetimes of carotenoids free in solution and incorporated into the LH2, LH1, RC, and RC-LH1 complexes: possible mechanisms of triplet-energy dissipation. BioChemistry 46(8):2181–2197. doi: 10.1021/bi062237z PubMedCrossRefGoogle Scholar
  37. Kakitani Y, Fujii R, Hayakawa Y, Kurahashi M, Koyama Y, Harada J, Shimada K (2007b) Selective binding of carotenoids with a shorter conjugated chain to the LH2 antenna complex and those with a longer conjugated chain to the reaction center from Rubrivivax gelatinosus. BioChemistry 46(24):7302–7313. doi: 10.1021/bi602485x PubMedCrossRefGoogle Scholar
  38. Kim H (2007) Discovery of novel photoprotection mechanisms in photosynthesis using optical spectroscopy and biosensor development. Purdue University, (Ph.D.)Google Scholar
  39. Klenina IB, Makhneva ZK, Moskalenko AA, Kuz’min AN, Proskuriakov II (2013) Singlet–triplet excitation fission in light-harvesting complexes of photosynthetic bacteria and in isolated carotenoids. Biofizika 58(1):54–63. doi: 10.1134/S0006350913010077 PubMedGoogle Scholar
  40. Klenina IB, Makhneva ZK, Moskalenko AA, Gudkov ND, Bolshakov MA, Pavlova EA, Proskuryakov II (2014) Singlet-triplet fission of carotenoid excitation in light-harvesting LH2 complexes of purple phototrophic bacteria. Biochemistry 79(3):235–241. doi: 10.1134/S0006297914030092 PubMedGoogle Scholar
  41. Kocsis P, Asztalos E, Gingl Z, Maróti P (2010) Kinetic bacteriochlorophyll fluorometer. Photosynth Res 105(1):73–82. doi: 10.1007/s11120-010-9556-6 PubMedCrossRefGoogle Scholar
  42. Koepke J, Hu XC, Muenke C, Schulten K, Michel H (1996) The crystal structure of the light-harvesting complex II (B800–850) from Rhodospirillum molischianum. Structure 4(5):581–597. doi: 10.1016/S0969-2126(96)00063-9 PubMedCrossRefGoogle Scholar
  43. Kolaczkowski SV (1989) On the mechanism of triplet energy transfer from the triplet primary donor to spheroidene in photosynthetic reaction centers from Rhodobacter sphaeroides, 2.4.1. Brown University, Providence, Rhode Island, (Ph.D.)Google Scholar
  44. Kosumi D, Horibe T, Sugisaki M, Cogdell RJ, Hashimoto H (2016) Photoprotection mechanism of light-harvesting antenna complex from purple bacteria. J Phys Chem B 120 (5):951–956. doi: 10.1021/acs.jpcb.6b00121 PubMedCrossRefGoogle Scholar
  45. Koyama Y (1991) New trends in photobiology: structures and functions of carotenoids in photosynthetic systems. J Photochem Photobiol B 9(3–4):265–280. doi: 10.1016/1011-1344(91)80165-E Google Scholar
  46. Koyama Y, Fujii R (1999) Cis–Trans carotenoids in photosynthesis: configurations‚ excited-state properties and physiological functions. In: Frank HA, Young AJ, Britton G, Cogdell RJ (eds) The photochemistry of carotenoids. Advances in photosynthesis and respiration, vol 8. Kluwer Academic Publishers, Dordrecht, pp 161–188. doi: 10.1007/0-306-48209-6_9 CrossRefGoogle Scholar
  47. Koyama Y, Kakitani Y (2006) Mechanisms of carotenoid-to-bacteriochlorophyll energy transfer in the light harvesting antenna complexes 1 and 2: dependence on the conjugation length of carotenoids. In: Grimm B, Porra RJ, Rüdiger W, Scheer H (eds) Chlorophylls and bacteriochlorophylls. Advances in photosynthesis and respiration, vol 25. Springer, Dordrecht, pp 431–443. doi: 10.1007/1-4020-4516-6_30 CrossRefGoogle Scholar
  48. Koyama Y, Kuki M, Andersson PO, Gillbro T (1996) Singlet excited states and the light-harvesting function of carotenoids in bacterial photosynthesis. Photochem Photobiol 63(3):243–256. doi: 10.1111/j.1751-1097.1996.tb03021.x CrossRefGoogle Scholar
  49. Koyama Y, Kakitani Y, Watanabe Y (2007) Photophysical properties and light-harvesting and photoprotective functions of carotenoids in bacterial photosynthesis: structural selections. In: Renger G (ed) Primary processes of photosynthesis, part 1: principles and apparatus, vol 8. RSC Publishing, Cambridge, pp 151–201. doi: 10.1039/9781847558152-00151 CrossRefGoogle Scholar
  50. Lang HP, Hunter CN (1994) The relationship between carotenoid biosynthesis and the assembly of the light-harvesting LH2 complex in Rhodobacter sphaeroides. Biochem J 298:197–205. doi: 10.1042/bj2980197 PubMedPubMedCentralCrossRefGoogle Scholar
  51. Magdaong NCM (2015) Spectroscopy and Photophysics of Carotenoids in Solution and in Light-harvesting Pigment-Protein Complexes. University of Connecticut, (Ph.D.)Google Scholar
  52. Mandal S, Carey AM, Locsin J, Gao BR, Williams JC, Allen JP, Lin S, Woodbury NW (2017) Mechanism of triplet energy transfer in photosynthetic bacterial reaction centers. J Phys Chem B. doi: 10.1021/acs.jpcb.7b03373 Google Scholar
  53. Maróti P (2008) Kinetics and yields of bacteriochlorophyll fluorescence: redox and conformation changes in reaction center of Rhodobacter sphaeroides. Eur Biophys J 37(7):1175–1184. doi: 10.1007/s00249-008-0300-5 PubMedCrossRefGoogle Scholar
  54. Maróti P, Wraight CA (1988) Flash-induced H+ binding by bacterial photosynthetic reaction centers—comparison of spectrophotometric and conductimetric methods. Biochim Biophys Acta 934(3):314–328. doi: 10.1016/0005-2728(88)90091-6 CrossRefGoogle Scholar
  55. Maróti P, Asztalos E, Sipka G (2013) Fluorescence assays for photosynthetic capacity of bacteria. Biophys J 104(2):545a–545a. doi: 10.1016/j.bpj.2012.11.3017 CrossRefGoogle Scholar
  56. Mathis P, Kleo J (1973) The triplet state of β-carotene and of analog polyenes of different length. Photochem Photobiol 18:343–346. doi: 10.1111/j.1751-1097.1973.tb06431.x CrossRefGoogle Scholar
  57. Mauzerall D (1976) Multiple excitations in photosynthetic systems. Biophys J 16(1):87–91. doi: 10.1016/S0006-3495(76)85665-2 PubMedPubMedCentralCrossRefGoogle Scholar
  58. Maxime A, van Grondelle R (2012) Time-resolved FTIR difference spectroscopy reveals the structure and dynamics of carotenoid and chlorophyll triplets in photosynthetic light-harvesting complexes. In: Prof. Theophile T (ed) Infrared spectroscopy—life and biomedical sciences. InTech, Rijeka. doi: 10.5772/36178 Google Scholar
  59. Monger TG, Parson WW (1977) Singlet-triplet fusion in Rhodopseudomonas sphaeroides chromatophores—probe of organization of photosynthetic apparatus. Biochim Biophys Acta 460(3):393–407. doi: 10.1016/0005-2728(77)90080-9 PubMedCrossRefGoogle Scholar
  60. Monger TG, Cogdell RJ, Parson WW (1976) Triplet states of bacteriochlorophyll and carotenoids in chromatophores of photosynthetic bacteria. Biochim Biophys Acta 449(1):136–153. doi: 10.1016/0005-2728(76)90013-X PubMedCrossRefGoogle Scholar
  61. Niedzwiedzki DM, Blankenship RE (2010) Singlet and triplet excited state properties of natural chlorophylls and bacteriochlorophylls. Photosynth Res 106(3):227–238. doi: 10.1007/s11120-010-9598-9 PubMedCrossRefGoogle Scholar
  62. Niedzwiedzki DM, Dilbeck PL, Tang Q, Mothersole DJ, Martin EC, Bocian DF, Holten D, Hunter CN (2015) Functional characteristics of spirilloxanthin and keto-bearing analogues in light-harvesting LH2 complexes from Rhodobacter sphaeroides with a genetically modified carotenoid synthesis pathway. Biochim Biophys Acta 1847(6–7):640–655. doi: 10.1016/j.bbabio.2015.04.001 PubMedCrossRefGoogle Scholar
  63. Pan J, Lin S, Allen JP, Williams JC, Frank HA, Woodbury NW (2011) Carotenoid excited-state properties in photosynthetic purple bacterial reaction centers: effects of the protein environment. J Phys Chem B 115(21):7058–7068. doi: 10.1021/jp200077e PubMedCrossRefGoogle Scholar
  64. Papiz MZ, Prince SM, Howard T, Cogdell RJ, Isaacs NW (2003) The structure and thermal motion of the B800–850 LH2 complex from Rps. acidophila at 2.0 Å resolution and 100K: new structural features and functionally relevant motions. J Mol Biol 326(5):1523–1538. doi: 10.1016/S0022-2836(03)00024-X PubMedCrossRefGoogle Scholar
  65. Ranck J, Ruiz T, Pehau-Arnaudet G, Arnoux B, Reiss-Husson F (2001) Two-dimensional structure of the native light-harvesting complex LH2 from Rubrivivax gelatinosus and of a truncated form. Biochim Biophys Acta 1506(1):67–78. doi: 10.1016/S0005-2728(01)00185-2 PubMedCrossRefGoogle Scholar
  66. Rondonuwu FS, Taguchi T, Fujii R, Yokoyama K, Koyama Y, Watanabe Y (2004) The energies and kinetics of triplet carotenoids in the LH2 antenna complexes as determined by phosphorescence spectroscopy. Chem Phys Lett 384(4–6):364–371. doi: 10.1016/j.cplett.2003.12.024 CrossRefGoogle Scholar
  67. Sipka G, Maróti P (2016) Induction and anisotropy of fluorescence of reaction center from photosynthetic bacterium Rhodobacter sphaeroides. Photosynth Res 127(1):61–68. doi: 10.1007/s11120-015-0096-y PubMedCrossRefGoogle Scholar
  68. Slouf V, Chabera P, Olsen JD, Martin EC, Qian P, Hunter CN, Polivka T (2012) Photoprotection in a purple phototrophic bacterium mediated by oxygen-dependent alteration of carotenoid excited-state properties. Proc Natl Acad Sci USA 109(22):8570–8575. doi: 10.1073/pnas.1201413109 PubMedPubMedCentralCrossRefGoogle Scholar
  69. Takaichi S (1999) Carotenoids and carotenogenesis in anoxygenic photosynthetic bacteria. In: Frank HA, Young AJ, Britton G, Cogdell RJ (eds) The photochemistry of carotenoids. Advances in photosynthesis and respiration, vol 8. Springer, Dordrecht, pp 39–69. doi: 10.1007/0-306-48209-6_3 CrossRefGoogle Scholar
  70. Ueda T, Morimoto Y, Sato M, Kakuno T, Yamashita J, Horio T (1985) Isolation, characterization, and comparison of a ubiquitous pigment-protein complex consisting of a reaction center and light-harvesting bacteriochlorophyll proteins present in purple photosynthetic bacteria. J Biochem 98(6):1487–1498. doi: 10.1093/oxfordjournals.jbchem.a135417 PubMedCrossRefGoogle Scholar
  71. van Grondelle R, Duysens LN (1980) On the quenching of the fluorescence yield in photosynthetic systems. Plant Physiol 65(4):751–754. doi: 10.1104/pp.65.4.751 PubMedPubMedCentralCrossRefGoogle Scholar
  72. Vermeglio A, Nagashima S, Alric J, Arnoux P, Nagashima KV (2012) Photo-induced electron transfer in intact cells of Rubrivivax gelatinosus mutants deleted in the RC-bound tetraheme cytochrome: insight into evolution of photosynthetic electron transport. Biochim Biophys Acta 1817(5):689–696. doi: 10.1016/j.bbabio.2012.01.011 PubMedCrossRefGoogle Scholar
  73. Wirtz AC, van Hemert MC, Lugtenburg J, Frank HA, Groenen EJ (2007) Two stereoisomers of spheroidene in the Rhodobacter sphaeroides R26 reaction center: a DFT analysis of resonance Raman spectra. Biophys J 93(3):981–991. doi: 10.1529/biophysj.106.103473 PubMedPubMedCentralCrossRefGoogle Scholar
  74. Wraight CA, Clayton RK (1974) The absolute quantum efficiency of bacteriochlorophyll photooxidation in reaction centres of Rhodopseudomonas spheroides. Biochim Biophys Acta 333(2):246–260. doi: 10.1016/0005-2728(74)90009-7 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of Medical PhysicsUniversity of SzegedSzegedHungary
  2. 2.Institute of Plant Biology, Biological Research CenterHungarian Academy of SciencesSzegedHungary

Personalised recommendations