Towards an empirical model to estimate the spatial variability of grapevine phenology at the within field scale

  • N. Verdugo-Vásquez
  • C. Acevedo-OpazoEmail author
  • H. Valdés-Gómez
  • B. Ingram
  • I. García de Cortázar-Atauri
  • B. Tisseyre


The aim of this study is to propose an empirical spatial model to estimate the spatial variability of grapevine phenology at the within-field scale. This spatial model allows the characterization of the spatial variability of a given variable of the fields through a single measurement performed in the field (reference site) and a combination of site-specific coefficients calculated through historical information. This approach was compared to classical approaches requiring extensive sampling and phenology models based on climatic data, which do not consider the spatial variability of the field. The study was conducted on two fields of Vitis vinifera, one of cv Cabernet Sauvignon (CS, 1.56 ha) and the other one of cv Chardonnay (CH, 1.66 ha) located in Maule Valley, Chile. Date of occurrence of grapevine phenology (budburst, flowering and veraison) were observed at the within field level following a regular sampling grid during 4 seasons for cv CS and 2 seasons for cv CH. The best results were obtained with the devised spatial model in almost all cases, with a Root Mean Square Errors (RMSE) lower than 3 days. However, if the variability of phenology is low, the traditional method of sampling could lead to better results. This study is the first step towards a modeling of the spatial variability of grapevine phenology at the within-field scale. To be fully operational in commercial vineyards, the calibration process needs simplification, for example, using low cost, inexpensive ancillary information to zone vineyards according to grapevine phenology.


Spatial model Climatic models Phenological stages Sensitivity analysis 



The authors of this paper wish to thank National CONICYT Doctoral Fellowship 2013 N°21130504 and PIEI Program of Agricultural Adaptation to Climate Change funded by the University of Talca.


  1. Acevedo-Opazo, C., Tisseyre, B., Ojeda, H., & Guillaume, S. (2010a). Spatial extrapolation of the vine (Vitis vinifera L.) water status: A first step towards a spatial prediction model. Irrigation Science, 28(2), 143–155. Scholar
  2. Acevedo-Opazo, C., Tisseyre, B., Taylor, J. A., Ojeda, H., & Guillaume, S. (2010b). A model for the spatial prediction of water status in vines (Vitis vinifera L.) using high resolution ancillary information. Precision Agriculture, 11(4), 358–378. Scholar
  3. Acevedo-Opazo, C., Valdés-Gómez, H., Taylor, J. A., Avalo, A., Verdugo-Vásquez, N., Araya, M., … Tisseyre, B. (2013). Assessment of an empirical spatial prediction model of vine water status for irrigation management in a grapevine field. Agricultural Water Management, 124, 58–68.Google Scholar
  4. Arnó, J., Martínez-Casasnovas, J. A., Ribes-Dasi, M., & Rosell, J. R. (2009). Review. Precision viticulture. Research topics, challenges and opportunities in site-specific vineyard management. Spanish Journal of Agricultural Research, 7(4), 779–790.CrossRefGoogle Scholar
  5. Arnó, J., Rosell, J. R., Blanco, R., Ramos, M. C., & Martínez-Casasnovas, J. A. (2011). Spatial variability in grape yield and quality influenced by soil and crop nutrition characteristics. Precision Agriculture, 13(3), 393–410. Scholar
  6. Baluja, J., Tardaguila, J., Ayestaran, B., & Diago, M. P. (2013). Spatial variability of grape composition in a Tempranillo (Vitis vinifera L.) vineyard over a 3-year survey. Precision Agriculture, 14(1), 40–58. Scholar
  7. Bonhomme, R. (2000). Bases and limits to using “” units. European Journal of Agronomy, 13(1), 1–10. Scholar
  8. Bramley, R. G. V., Evans, K. J., Dunne, K. J., & Gobbett, D. L. (2011a). Spatial variation in response to ‘reduced input’ spray programs for powdery mildew and botrytis identified through whole-of-block experimentation. Australian Journal of Grape and Wine Research, 17(3), 341–350. Scholar
  9. Bramley, R. G. V., Ouzman, J., & Boss, P. K. (2011b). Variation in vine vigour, grape yield and vineyard soils and topography as indicators of variation in the chemical composition of grapes, wine and wine sensory attributes. Australian Journal of Grape and Wine Research, 17(2), 217–229. Scholar
  10. Caffarra, A., & Eccel, E. (2010). Increasing the robustness of phenological models for Vitis vinifera cv. Chardonnay. International Journal of Biometeorology, 54(3), 255–267. Scholar
  11. Chuine, I., García de Cortazar-Atauri, I., Kramer, K., & Hänninen, H. (2013). Plant development models. In M. D. Schwartz (Ed.), Phenology: An integrative environmental science (pp. 275–293). Dordrecht, Netherlands: Springer. Scholar
  12. Coombe, B. G. (1995). Adoption of a system for identifying grapevine growth stages. Australian Journal of Grape and Wine Research, 1(2), 104–110.CrossRefGoogle Scholar
  13. García de Cortázar-Atauri, I., Brisson, N., & Gaudillere, J. P. (2009). Performance of several models for predicting budburst date of grapevine (Vitis vinifera L.). International Journal of Biometeorology, 53(4), 317–326. Scholar
  14. Jorquera-Fontena, E., & Orrego-Verdugo, R. (2010). Impact of global warming on the phenology of a variety of grapevine grown in Southern Chile. Agrociencia, 44(4), 427–435.Google Scholar
  15. King, P. D., Smart, R. E., & McClellan, D. J. (2014). Within-vineyard variability in vine vegetative growth, yield, and fruit and wine composition of Cabernet Sauvignon in Hawke’s Bay, New Zealand. Australian Journal of Grape and Wine Research, 20, 234–246. Scholar
  16. Kunz, T., & Tatham, B. (2012). Localization in wireless sensor networks and anchor placement. Journal of Sensor and Actuator Networks, 1(1), 36–58. Scholar
  17. Matese, A., Crisci, A., Di Gennaro, S., Primicerio, J., Tomasi, D., Marcuzzo, P., et al. (2014). Spatial variability of meteorological conditions at different scales in viticulture. Agricultural and Forest Meteorology, 189–190, 159–167. Scholar
  18. Molitor, D., Junk, J., Evers, D., Hoffmann, L., & Beyer, M. (2013). A high-resolution cumulative degree day-based model to simulate phenological development of grapevine. American Journal of Enology and Viticulture. Scholar
  19. Mullins, M. G., Bouquet, A., & Williams, L. E. (1992). Biology of the grapevine. New York, USA: Cambridge University Press.Google Scholar
  20. Ortega-Farías, S., Lozano, P., Moreno, Y., & León, L. (2002). Development of models for predicting phenology and evolution of madurity in cv. Cabernet Sauvignon and Chardonnay grapevines. Agricultura Técnica, 62(1), 27–37.CrossRefGoogle Scholar
  21. Parker, A., García de Cortázar-Atauri, I., Chuine, I., Barbeau, G., Bois, B., Boursiquot, J.-M., … van Leeuwen, C. (2013). Classification of varieties for their timing of flowering and veraison using a modelling approach: A case study for the grapevine species Vitis vinifera L. Agricultural and Forest Meteorology, 180, 249–264.
  22. Parker, A. K., Garcia de Cortázar-Atauri, I., Van Leeuwen, C., & Chuine, I. (2011). General phenological model to characterise the timing of flowering and veraison of Vitis vinifera L. Australian Journal of Grape and Wine Research, 17(2), 206–216. Scholar
  23. Primicerio, J., Matese, A., Gennaro, S. F. Di, Albanese, L., Guidoni, S., & Gay, P. (2013). Development of an integrated, low-cost and open-source system for precision viticulture : from UAV to WSN. In EFITA-WCCA-CIGR conference “Sustainable agriculture through ICT innovation” Turin, Italy (pp. 24–27).Google Scholar
  24. Taylor, J. A., Coulouma, G., Lagacherie, P., & Tisseyre, B. (2009). Mapping soil units within a vineyard using statistics associated with high-resolution apparent soil electrical conductivity data and factorial discriminant analysis. Geoderma, 153(1–2), 278–284. Scholar
  25. Taylor, J. A., Tisseyre, B., Bramley, R. G. V., & Reid, A. (2005). A comparison of the spatial variability of vineyard yield in European and Australian production systems. In 5th European conference on precision agriculture (pp. 907–915).Google Scholar
  26. Tisseyre, B., Mazzoni, C., & Fonta, H. (2008). Whithin-field temporal stability of some parameters in viticulture: Potential toward a site specific management. Journal International Des Sciences de La Vigne et Du Vin, 42(1), 27–39.Google Scholar
  27. Valdés-Gómez, H., Araya-Alman, M., Pañitrur-De la Fuente, C., Verdugo-Vásquez, N., Lolas, M., Acevedo-Opazo, C., … Calonnec, A. (2017). Evaluation of a decision support strategy for the control of powdery mildew, Erysiphe necator (Schw.) Burr., in grapevine in the central region of Chile. Pest Management Science.
  28. Verdugo-Vásquez, N., Acevedo-Opazo, C., Valdés-Gómez, H., Araya-Alman, M., Ingram, B., García de Cortázar-Atauri, I., et al. (2016). Spatial variability of phenology in two irrigated grapevine cultivar growing under semi-arid conditions. Precision Agriculture, 17(2), 218–245. Scholar
  29. Verdugo-Vásquez, N., Acevedo-Opazo, C., Valdes-Gomez, H., Ingram, B., García de Cortázar-Atauri, I., & Tisseyre, B. (2018). Temporal stability of within-field variability of total soluble solids of grapevine under semi-arid conditions: A first step towards a spatial model. Oeno One, 52(1), 15–30. Scholar
  30. Verdugo-Vásquez, N., Pañitrur-De la Fuente, C., & Ortega-Farías, S. (2017). Model development to predict phenological scales of table grapes (cvs. Thompson, Crimson and Superior Seedless and Red Globe) using growing degree days. Oeno One, 51(3), 277–288. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centro de Investigación IntihuasiInstituto de Investigaciones Agropecuarias INIALa SerenaChile
  2. 2.Facultad de Ciencias Agrarias, CITRAUniversidad de TalcaTalcaChile
  3. 3.Departamento de Fruticultura y EnologíaPontificia Universidad Católica de ChileSantiagoChile
  4. 4.Cranfield Soil and Agrifood InstituteCranfield UniversityBedfordshireUK
  5. 5.INRA, US 1116 AGROCLIMAvignonFrance
  6. 6.ITAP, Montpellier SupAgro, IrsteaUniv. Montpellier Bât. 21MontpellierFrance

Personalised recommendations