Advertisement

Precision Agriculture

, Volume 20, Issue 6, pp 1251–1273 | Cite as

Spatial variability of the physical quality of soil from management zones

  • José Francirlei de OliveiraEmail author
  • Stanislas MayiIII
  • Robélio Leandro Marchão
  • Edemar Joaquim Corazza
  • Sandro Carmelino Hurtado
  • Juaci Vitória Malaquias
  • João Tavares Filho
  • Michel Brossard
  • Maria de Fátima Guimarães
Article
  • 272 Downloads

Abstract

The uniform management of soil, without considering the local soil spatial variability of its properties, may accelerate its degradation process. The objectives of this study were to: (i) delineate homogeneous management zones (HMZs) using the multivariate analysis approach, and (ii) evaluate the effect of uniform soil management on the physical–hydraulic attributes of these HMZ. The study was carried out in two fields: field 1 (F1) of 312 ha and field 2 (F2) of 297 ha. After collection of soil samples (grid approach) and laboratory analyses, principal component and cluster analyses were applied to define the HMZ in each field. After a new visit to the fields to confirm the variation of HMZ, soil profile samples were collected for soil quality analysis. The HMZ corresponded to soil spatial variability at the mineralogy level. The HMZ were defined by the soil physical attributes bulk density (Bd) and structural porosity in fields where soil spatial variability had greater homogeneity (F1), and by chemical attributes when it was more complex (F2). Considering uniform management, in F1, a marked reduction in structural porosity was observed in 46% of the 312 ha. F2 had an accentuated reduction in structural porosity of 26% and an increase in Bd in the other 24% of the surface layer (0.00–0.30 m). These results confirm the hypothesis that uniform management can increase the soil degradation and potential erosion, and that dividing the field into HMZs can result in a more adequate and sustainable soil management.

Keywords

No tillage Soil degradation Soil spatial variability 

Notes

Acknowledgements

We wish to thank the Corazza and Pagnussalt Families, for field support; to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for granting the PhD scholarships to the first author and productivity scholarships to the seventh and last authors; and to Empresa Brasileira de Pesquisa Agropecuária (Embrapa) for project funding (granting number 01090100203.00.00).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Ajayi, A. E., de Souza Dias Junior, M., Curi, N., Gontijo, I., Araujo-Junior, C. F., & Vasconcelos Júnior, A. I. (2009). Relation of strength and mineralogical attributes in Brazilian latosols. Soil and Tillage Research, 102(1), 14–18.  https://doi.org/10.1016/j.still.2008.05.013.CrossRefGoogle Scholar
  2. Balbino, L. C., Brossard, M., Leprun, J.-C., & Bruand, A. (2002). Mise en valeur des Ferralsols de la région du Cerrado (Brésil) et évolution de leurs propriétés physiques: une étude bibliographique. Étude et Gestion des Sols, 9(2), 83–104. https://hal.archives-ouvertes.fr/hal-00077609/document.
  3. Boizard, H., Peigné, J., Sasal, M. C., de Fátima Guimarães, M., Piron, D., Tomis, V., et al. (2016). Developments in the “profil cultural” method for an improved assessment of soil structure under no-till. Soil and Tillage Research.  https://doi.org/10.1016/j.still.2016.07.007.CrossRefGoogle Scholar
  4. Bortoluzzi, E. C., Pérez, C. A. S., Ardisson, J. D., Tiecher, T., & Caner, L. (2015). Occurrence of iron and aluminum sesquioxides and their implications for the P sorption in subtropical soils. Applied Clay Science, 104, 196–204.  https://doi.org/10.1016/j.clay.2014.11.032.CrossRefGoogle Scholar
  5. Boyer, J. (1982). In J. Boyer (Ed.), Les sols ferrallitiques: 10. facteurs de fertilité et utilisation des sols. Initiations-Documentations Techniques; 52. Paris: ORSTOM.Google Scholar
  6. Cambardella, C. A., Moorman, T. B., Novak, J. M., Parkin, T. B., Karlen, D. L., Turco, R. F., et al. (1994). Field-scale variability of soil properties in Central Iowa soils. Soil Science Society of America Journal, 58(5), 1501–1511.CrossRefGoogle Scholar
  7. Córdoba, M., Bruno, C., Costa, J., & Balzarini, M. (2013). Subfield management class delineation using cluster analysis from spatial principal components of soil variables. Computers and Electronics in Agriculture, 97, 6–14.  https://doi.org/10.1016/j.compag.2013.05.009.CrossRefGoogle Scholar
  8. Córdoba, M. A., Bruno, C. I., Costa, J. L., Peralta, N. R., & Balzarini, M. G. (2016). Protocol for multivariate homogeneous zone delineation in precision agriculture. Biosystems Engineering, 143, 95–107.  https://doi.org/10.1016/j.biosystemseng.2015.12.008.CrossRefGoogle Scholar
  9. De Caires, S. A., Wuddivira, M. N., & Bekele, I. (2015). Spatial analysis for management zone delineation in a humid tropic cocoa plantation. Precision Agriculture, 16(2), 129–147.  https://doi.org/10.1007/s11119-014-9366-5.CrossRefGoogle Scholar
  10. de Macedo, S. F. S., Grimaldi, M., Medina, C. C., da Cunha, J. E., de Guimarães, M. F., & Tavares Filho, J. (2017). Physical properties of soil structures identified by the Profil Cultural under two soil management systems. Revista Brasileira de Ciência do Solo, 41, e0160503.  https://doi.org/10.1590/18069657rbcs20160503.CrossRefGoogle Scholar
  11. de Sá, J. C. M., Cerri, C. C., Lal, R., Dick, W. A., de Cassia Piccolo, M., & Feigl, B. E. (2009). Soil organic carbon and fertility interactions affected by a tillage chronosequence in a Brazilian Oxisol. Soil and Tillage Research, 104(1), 56–64.  https://doi.org/10.1016/j.still.2008.11.007.CrossRefGoogle Scholar
  12. de Sá, J. C. M., Tivet, F., Lal, R., Briedis, C., Hartman, D. C., dos Santos, J. Z., et al. (2014). Long-term tillage systems impacts on soil C dynamics, soil resilience and agronomic productivity of a Brazilian Oxisol. Soil and Tillage Research, 136, 38–50.  https://doi.org/10.1016/j.still.2013.09.010.CrossRefGoogle Scholar
  13. Dexter, R. (2004). Soil physical quality. Part I. Theory, effects of soil texture, density, and organic matter, and effects on root growth. Geoderma, 120, 201–214.  https://doi.org/10.1016/j.geodermaa.2003.09.005.CrossRefGoogle Scholar
  14. Dieckow, J., Bayer, C., Conceição, P. C., Zanatta, J. A., Martin-Neto, L., Milori, D. B. M., et al. (2009). Land use, tillage, texture and organic matter stock and composition in tropical and subtropical Brazilian soils. European Journal of Soil Science, 60(2), 240–249.  https://doi.org/10.1111/j.1365-2389.2008.01101.x.CrossRefGoogle Scholar
  15. Donagemma, G. K., Campos, D. V. B., Calderano, S. B., Teixeira, W. G., & Viana, J. H. M. (2011). Manual de Métodos de Análise de Solo. Embrapa solos (Vol. 2, p. 230).Google Scholar
  16. Dragović, S., & Onjia, A. (2006). Classification of soil samples according to their geographic origin using gamma-ray spectrometry and principal component analysis. Journal of Environmental Radioactivity, 89(2), 150–158.  https://doi.org/10.1016/j.jenvrad.2006.05.002.CrossRefPubMedGoogle Scholar
  17. Duffera, M., White, J. G., & Weisz, R. (2007). Spatial variability of Southeastern U.S. Coastal Plain soil physical properties: Implications for site-specific management. Geoderma, 137(3–4), 327–339.  https://doi.org/10.1016/j.geoderma.2006.08.018.CrossRefGoogle Scholar
  18. Embrapa, E. B. D. P. A. (2006). Sistema brasileiro de classificação de solos. Rio de Janeiro: Embrapa Solos. ISBN 978-85-7035-198-2.Google Scholar
  19. Ferreira, M. M., Fernandes, B., & Curi, N. (1999). Influência da mineralogia da fração argila nas propriedades fisicas de Latossolos da região sudeste do Brasil. Revista Brasileira de Ciência do Solo, 23(1), 515–524.  https://doi.org/10.1590/s0100-06832009000100004.CrossRefGoogle Scholar
  20. Fleming, K. L., Wastfall, D. G., Wiens, D. W., & Brodahl, M. C. (2000). Evaluating farmer defined management zone maps for variable rate fertilizer application. Precision Agriculture, 2, 201–215.CrossRefGoogle Scholar
  21. Flores-Delgadillo, L., Fedick, S. L., Solleiro-Rebolledo, E., Palacios-Mayorga, S., Ortega-Larrocea, P., Sedov, S., et al. (2011). A sustainable system of a traditional precision agriculture in a Maya homegarden: Soil quality aspects. Soil and Tillage Research, 113(2), 112–120.  https://doi.org/10.1016/j.still.2011.03.001.CrossRefGoogle Scholar
  22. Fritsch, E., Morin, G., Bedidi, A., Bonnin, D., Balan, E., Caquineau, S., et al. (2005). Transformation of haematite and Al-poor goethite to Al-rich goethite and associated yellowing in a ferralitic clay soil profile of the middle Amazon Basin (Manaus, Brazil). European Journal of Soil Science, 56(5), 575–588.  https://doi.org/10.1111/j.1365-2389.2005.00693.x.CrossRefGoogle Scholar
  23. Frossard, E., Brossard, M., Feller, C., & Rouiller, J. (1992). Pouvoir fixateur vis-à-vis des ions phosphate de sols tropicaux à argile 1:1. Canadian Journal of Soil Science, 72(2), 135–143.  https://doi.org/10.4141/cjss92-013.CrossRefGoogle Scholar
  24. Frossard, E., Brossard, M., Hedley, M. J., & Metherell, A. (1995). Reactions controlling the cycling of P in soils. In Phosphorus in the global environment: Transfers, cycles, and management. Chichester: Wiley.Google Scholar
  25. Fu, W., Tunney, H., & Zhang, C. (2010). Spatial variation of soil nutrients in a dairy farm and its implications for site-specific fertilizer application. Soil and Tillage Research, 106(2), 185–193.  https://doi.org/10.1016/j.still.2009.12.001.CrossRefGoogle Scholar
  26. Fujisaki, K., Chevallier, T., Chapuis-Lardy, L., Albrecht, A., Razafimbelo, T., Masse, D., et al. (2018). Soil carbon stock changes in tropical croplands are mainly driven by carbon inputs: A synthesis. Agriculture, Ecosystems and Environment.  https://doi.org/10.1016/j.agee.2017.12.008.CrossRefGoogle Scholar
  27. Gargiulo, L., Mele, G., & Terribile, F. (2013). Image analysis and soil micromorphology applied to study physical mechanisms of soil pore development: An experiment using iron oxides and calcium carbonate. Geoderma, 197–198, 151–160.  https://doi.org/10.1016/j.geoderma.2013.01.008.CrossRefGoogle Scholar
  28. Gerzabek, M. H., Antil, R. S., Kogel-Knabner, I., Knicker, H., Kirchmann, H., & Haberhauer, G. (2006). How are soil use and management reflected by soil organic matter characteristics: A spectroscopic approach. European Journal of Soil Science, 57(4), 485–494.  https://doi.org/10.1111/j.1365-2389.2006.00794.x.CrossRefGoogle Scholar
  29. Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2009). Analise multivariada de dados. Bookman.  https://doi.org/10.1119/1.3129093.CrossRefGoogle Scholar
  30. Hodson, M. E. (2002). Variation in element release rate from different mineral size fractions from the B horizon of a granitic podzol. Chemical Geology, 190(1–4), 91–112.  https://doi.org/10.1016/s0009-2541(02)00112-2.CrossRefGoogle Scholar
  31. Ikenaga, S., & Inamura, T. (2008). Evaluation of site-specific management zones on a farm with 124 contiguous small paddy fields in a multiple-cropping system. Precision Agriculture, 9(3), 147–159.  https://doi.org/10.1007/s11119-008-9062-4.CrossRefGoogle Scholar
  32. Instituto Brasileiro de Geografia e Estatística. (2007). Technical manual of pedology (2nd ed.). Rio de Janeiro: Diretoria de Geociências.Google Scholar
  33. IUSS Working Group WRB. (2015). World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. Rome: FAO. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:World+reference+base+for+soil+resources+2006#0.
  34. Jie, C., Jing-zhang, C., Man-zhi, T., & Zi-tong, G. (2002). Soil degradation: a global problem endangering sustainable development. Journal of Geographical Sciences, 12, 243–252.  https://doi.org/10.1007/bf02837480.CrossRefGoogle Scholar
  35. Lal, R., & Stewart, B. A. (2015). In R. Lal & B. A. Stewart (Eds.), Soil-specific farming: Precision agriculture. Boca Raton, FL: EUA: CRC Press.CrossRefGoogle Scholar
  36. Ma, R., Cai, C., Li, Z., Wang, J., Xiao, T., Peng, G., et al. (2015). Evaluation of soil aggregate microstructure and stability under wetting and drying cycles in two Ultisols using synchrotron-based X-ray micro-computed tomography. Soil and Tillage Research.  https://doi.org/10.1016/j.still.2014.12.016.CrossRefGoogle Scholar
  37. Marques, J. J., Schulze, D. G., Curi, N., & Mertzman, S. A. (2004). Major element geochemistry and geomorphic relationships in Brazilian Cerrado soils. Geoderma, 119(3–4), 179–195.  https://doi.org/10.1016/s0016-7061(03)00260-x.CrossRefGoogle Scholar
  38. Ministério da agricultura, pecuária e abastecimento. (2012). Plano setorial de mitigação e de adaptação às mudanças climáticas para a consolidação de uma economia de baixa emissão de carbono na agricultura: plano ABC (Agricultura de Baixa Emissão de Carbono). Brasília, DF: MAPA/ACS.Google Scholar
  39. Moreira, W. H., Tormena, C. A., Karlen, D. L., da Silva, Á. P., Keller, T., & Betioli, E. (2016). Seasonal changes in soil physical properties under long-term no-tillage. Soil and Tillage Research.  https://doi.org/10.1016/j.still.2016.02.007.CrossRefGoogle Scholar
  40. Nawaz, M. F., Bourrié, G., & Trolard, F. (2013). Soil compaction impact and modelling. A review. Agronomy for Sustainable Development, 33(2), 291–309.  https://doi.org/10.1007/s13593-011-0071-8.CrossRefGoogle Scholar
  41. Neufeldt, H., Resck, D. V. S., & Ayarza, M. A. (2002). Texture and land-use effects on soil organic matter in Cerrado Oxisols, Central Brazil. Geoderma, 107(3–4), 151–164.  https://doi.org/10.1016/s0016-7061(01)00145-8.CrossRefGoogle Scholar
  42. Nimmo, J. R. (2004). Porosity and pore size distribution. In Encyclopedia of soils in the environment (pp. 295–303).  https://doi.org/10.1016/b978-0-12-409548-9.05265-9.Google Scholar
  43. Nunes, M. R., Denardin, J. E., Pauletto, E. A., Faganello, A., & Pinto, L. F. S. (2015). Mitigation of clayey soil compaction managed under no-tillage. Soil and Tillage Research, 148, 119–126.  https://doi.org/10.1016/j.still.2014.12.007.CrossRefGoogle Scholar
  44. Panishkan, K., Areekijseree, M., Sanmanee, N., & Swangjang, K. (2010). Soil classification based on their composition using principal component analysis. Environment Asia, 7(1), 47–52.Google Scholar
  45. Peralta, N. R., Costa, J. L., Balzarini, M., Castro Franco, M., Córdoba, M., & Bullock, D. (2015). Delineation of management zones to improve nitrogen management of wheat. Computers and Electronics in Agriculture, 110, 103–113.  https://doi.org/10.1016/j.compag.2014.10.017.CrossRefGoogle Scholar
  46. QGIS Development Team. (2015). QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://www.qgis.org/.
  47. R Development Core Team. (2011). In R. D. C. Team (Ed.), R: A language and environment for statistical computing. R Foundation for Statistical Computing.  https://doi.org/10.1007/978-3-540-74686-7.Google Scholar
  48. Reatto, A., Bruand, A., de Souza Martins, E., Muller, F., da Silva, E. M., de Carvalho, O. A., et al. (2008). Variation of the kaolinite and gibbsite content at regional and local scale in Latosols of the Brazilian Central Plateau. Comptes Rendus Geoscience, 340(11), 741–748.  https://doi.org/10.1016/j.crte.2008.07.006.CrossRefGoogle Scholar
  49. Reichert, J. M., da Rosa, V. T., Vogelmann, E. S., da Rosa, D. P., Horn, R., Reinert, D. J., et al. (2016). Conceptual framework for capacity and intensity physical soil properties affected by short and long-term (14 years) continuous no-tillage and controlled traffic. Soil and Tillage Research.  https://doi.org/10.1016/j.still.2015.11.010.CrossRefGoogle Scholar
  50. Resende, M., Bahia Filho, A. F. C., & Braga, J. M. (1987). Mineralogia Da Argila De Latossolos Estimada Por Alocação Apartir Do Teor Total De Óxidos Do Ataque Sulfúrico. The Revista Brasileira de Ciência do Solo, 11(I), 17–23.Google Scholar
  51. Resende, M., & Santana, D. P. (1988). Uso das relações Ki e Kr na estimativa da mineralogia para a classificação dos Latossolos. In Reunião de classificação, correlação de solos e interpretaçã de aptidão agrícola (3rd ed., pp. 225–232). Rio de Janeiro: Embrapa – SNLCS, SBCS.Google Scholar
  52. Reynolds, W. D., Bowman, B. T., Drury, C. F., Tan, C. S., & Lu, X. (2002). Indicators of good soil physical quality: Density and storage parameters. Geoderma, 110(1–2), 131–146.  https://doi.org/10.1016/s0016-7061(02)00228-8.CrossRefGoogle Scholar
  53. Rickson, R. J., Deeks, L. K., Graves, A., Harris, J. A. H., Kibblewhite, M. G., & Sakrabani, R. (2015). Input constraints to food production: The impact of soil degradation. Food Security, 7(2), 351–364.  https://doi.org/10.1007/s12571-015-0437-x.CrossRefGoogle Scholar
  54. Santos, H. G., Jacomine, P. K. T., Anjos, L. H. C., Oliveira, V. A., Coelho, M. R., Lumbrelas, J. R., et al. (2006). Sistema Brasileiro de Classificação de Solos (2nd ed.). Rio de Janeiro: EMBRAPA-SPI.Google Scholar
  55. Schwertmann, U., & Taylor, R. M. (1989). Iron oxides. In J. B. Dixon & S. R. Weed (Eds.), Minerals in soil environments (2nd ed., pp. 379–438). Madison, WI: Soil Science Society of America.  https://doi.org/10.2136/sssabookser1.2ed.c8.Google Scholar
  56. Sena, M., Frighetto, R. T., Valarini, P., Tokeshi, H., & Poppi, R. (2002). Discrimination of management effects on soil parameters by using principal component analysis: A multivariate analysis case study. Soil and Tillage Research, 67(2), 171–181.  https://doi.org/10.1016/s0167-1987(02)00063-6.CrossRefGoogle Scholar
  57. Silva, E. M., & Azevedo, J. A. (2002). Influência do período de centrifugação na curva de retenção de água em solos de Cerrado. Pesquisa Agropecuária Brasileira, 37(10), 1487–1494.CrossRefGoogle Scholar
  58. Silva, S. D. A., & Lima, J. S. D. S. (2012). Multivariate analysis and geostatistics of the fertility of a humic rhodic hapludox under coffee cultivation. Revista Brasileira de Ciência do Solo, 36(1), 467–474.  https://doi.org/10.1590/s0100-06832012000200016.CrossRefGoogle Scholar
  59. Sposito, G. (2008). The chemistry of soils (2nd ed., Vol. 53). New York: Oxford University Press.  https://doi.org/10.1017/cbo9781107415324.004.
  60. Soil Science Division Staff. (1993). Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook (Vol. 18, pp. 1–2).  https://doi.org/10.1097/00010694-195112000-00022.
  61. Strudley, M. W., Green, T. R., & Ascough, J. C. (2008). Tillage effects on soil hydraulic properties in space and time: State of the science. Soil and Tillage Research.  https://doi.org/10.1016/j.still.2008.01.007.CrossRefGoogle Scholar
  62. Tabachnick, B. G., & Fidell, L. S. (2007). Using multivariate statistic (5th ed.). Boston: Pearson/Allyn and Bacon.Google Scholar
  63. Tavares Filho, J., de Melo, T. R., Machado, W., & Maciel, B. V. (2014). Structural changes and degradation of Red Latosols under different management systems for 20 years. Revista Brasileira de Ciência do Solo, 38(4), 1293–1303.  https://doi.org/10.1590/s0100-06832014000400025.CrossRefGoogle Scholar
  64. Taylor, J. C., Wood, G. A., Earl, R., & Godwin, R. J. (2003). Soil factors and their influence on within-field crop variability, Part II: Spatial analysis and determination of management zones. Biosystems Engineering, 84(4), 441–453.  https://doi.org/10.1016/s1537-5110(03)00005-9.CrossRefGoogle Scholar
  65. Utomo, W. H., & Dexter, A. R. (1982). Changes in soil aggregate water stability induced by wetting and drying cycles in non-saturated soil. Journal of Soil Science.  https://doi.org/10.1111/j.1365-2389.1982.tb01794.x.CrossRefGoogle Scholar
  66. van Genuchten, M. T. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils1. Soil Science Society of America Journal.  https://doi.org/10.2136/sssaj1980.03615995004400050002x.CrossRefGoogle Scholar
  67. Vendrame, P. R. S., Brito, O. R., Guimarães, M. F., Martins, É. S., & Becquer, T. (2010). Fertility and acidity status of latossolos (oxisols) under pasture in the Brazilian Cerrado. Anais da Academia Brasileira de Ciências, 82(4), 1085–1094.  https://doi.org/10.1590/s0001-37652010000400026.CrossRefPubMedGoogle Scholar
  68. Vieira, S. R. (2000). Geoestatística em estudos de variabilidade espacial do solo. In R. F. Novais, V. H. Alvarez, & C. E. G. R. Schaefer (Eds.), Tópicos em Ciência do Solo (Vol. 1, pp. 1–53). Viçosa, MG: Sociedade Brasileira de Ciência do Solo.Google Scholar
  69. Volland-Tuduri, N., Bruand, A., Brossard, M., Balbino, L. C., de Oliveira, M. I. L., de Martins, É., et al. (2005). Mass proportion of microaggregates and bulk density in a Brazilian clayey oxisol. Soil Science Society of America Journal, 69(5), 1559–1564.  https://doi.org/10.2136/sssaj2003.0344.CrossRefGoogle Scholar
  70. Vrdoljak, G., & Sposito, G. (2002). Soil aggregate hierarchy in a Brazilian oxisol. Developments in Soil Science, 28(PART A), 197–217.  https://doi.org/10.1016/s0166-2481(02)80054-x.CrossRefGoogle Scholar
  71. Wishart, David. (1969). An algorithm for hierarchical classifications. Biometrics, 25(1), 165–170.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • José Francirlei de Oliveira
    • 1
    Email author
  • Stanislas MayiIII
    • 2
  • Robélio Leandro Marchão
    • 3
  • Edemar Joaquim Corazza
    • 4
  • Sandro Carmelino Hurtado
    • 5
  • Juaci Vitória Malaquias
    • 3
  • João Tavares Filho
    • 2
  • Michel Brossard
    • 6
  • Maria de Fátima Guimarães
    • 2
  1. 1.Instituto Agronômico do ParanáLondrinaBrazil
  2. 2.Centro de Ciências Agrárias (CCA), Departamento de AgronomiaUniversidade Estadual de Londrina (UEL)LondrinaBrazil
  3. 3.Embrapa CerradosPlanaltinaBrazil
  4. 4.Secretaria de Pesquisa e Desenvolvimento (SPD)Empresa Brasileira de Pesquisa Agropecuária (Embrapa)BrasíliaBrazil
  5. 5.Instituto de Ciências AgrariasUniversidade Federal de UberlândiaUberlândiaBrazil
  6. 6.Institut de Recherche pour le Développement (IRD), UMR 210 Eco&SolsMontpellier Cedex 2France

Personalised recommendations