Advertisement

Papaver rhoeas L. mapping with cokriging using UAV imagery

  • Montserrat Jurado-ExpósitoEmail author
  • Ana Isabel de Castro
  • Jorge Torres-Sánchez
  • Francisco Manuel Jiménez-Brenes
  • Francisca López-Granados
Article
  • 32 Downloads

Abstract

Accurately mapping the spatial distribution of weeds within a field is a first step towards effective Site-specific Weed Management. The main objective of this study was to investigate if the multivariate geostatistical method of cokriging (COK) can be used to improve the accuracy of Papaver rhoeas L. infestations maps in winter wheat fields using high-resolution UAV imagery as ancillary information. The primary variable was obtained by intensive grid weed density field samplings and the secondary variables were derived from the UAV imagery taken the same day as the weed field samplings (e.g. wavebands and derivative products, such as band ratios and vegetation indexes). Univariate Ordinary Kriging (OK) and multivariate cokriging (COK) interpolation methods were used and compared for Papaver density mapping. The performances of the different methods were assessed by cross-validation. The results indicated that COK outperformed OK in the spatial interpolation of Papaver density. COK reduced the prediction errors and enhanced the accuracy of Papaver estimates maps. The best performances were obtained when COK was performed with the UAV-secondary variables that yielded the highest correlation with Papaver density and produced the strongest spatial cross-semivariograms. On average, the COK with UAV-derived ancillary variables improved the accuracy of mapping Papaver density by 11 to 21% compared with OK. The results suggest the great potential of high-resolution UAV imagery as a source of ancillary information to improve the accuracy of spatial mapping of sparsely sampled target variables using COK.

Keywords

Ancillary variables Corn poppy Geostatistic Kriging Precision Agriculture Cross-semivariogram SSWM Weeds 

Notes

Acknowledgements

This research was financed by the AGL2014-52465-C4-4-R and AGL2017-83325-C4-4-R MINECO (Spanish Ministry of Economy and Competition, FEDER Funds). Research of AI. de Castro was financed by Juan de la Cierva (MINECO) program. The authors thank Dr. Recasens and his group for their valuable help in field surveys.

References

  1. Adjorlolo, C., & Mutanga, O. (2013). Integrating remote sensing and geostatistics to estimate woody vegetation in an African savanna. Journal of Spatial Science, 58(2), 305–322.Google Scholar
  2. Barrero, O., & Perdomo, S. A. (2018). RGB and multispectral UAV image fusion for Gramineae weed detection in rice fields. Precision Agriculture.  https://doi.org/10.1007/s11119-017-9558-x.Google Scholar
  3. Barroso, J., Fernández-Quintanilla, C., Ruiz, D., Hernaiz, P., & Rew, R. J. (2004). Spatial stability of Avena sterilis ssp. ludoviciana populations under annual. Weed Research, 44(3), 178–186.Google Scholar
  4. Barroso, J., Ruiz, D., Fernandez-Quintanilla, C., Leguizamon, E. S., Hernaiz, P., Ribeiro, A., et al. (2005). Comparison of sampling methodologies for site-specific management of Avena sterilis. Weed Research, 45(2), 165–174.Google Scholar
  5. Bennett, N. D., Croke, B. F. W., Guariso, G., Guillaume, J. H. A., Hamilton, S. H., Jakeman, A. J., et al. (2013). Characterising performance of environmental models. Environmental Modelling & Software, 40(1), 1–20.Google Scholar
  6. Blanco-Moreno, J. M., Chamorro, L., & Sans, F. X. (2006). Spatial and temporal patterns of Lolium rigidumAvena sterilis mixed populations in a cereal field. Weed Research, 46(3), 207–218.Google Scholar
  7. Camargo-Neto, J. (2004). A combined statistical—soft computing approach for classification and mapping weed species in minimum tillage systems. Lincoln, NE: University of Nebraska.Google Scholar
  8. Cambardella, C. A., & Karlen, D. L. (1999). Spatial analysis of soil fertility parameters. Precision Agriculture, 1(1), 5–11.Google Scholar
  9. Cantero-Martínez, C., Angás, P., & Lampurlanés, J. (2007). Long-term yield and water use efficiency under various tillage systems in Mediterranean rainfed conditions. Annals of Applied Biology, 150(3), 293–305.Google Scholar
  10. Cardina, J., Jonson, G. A., & Sparrow, D. H. (1997). The nature and consequence of weed spatial distribution. Weed Science, 45(3), 364–373.Google Scholar
  11. Castaldi, F., Pelosi, F., Pascucci, S., & Casa, R. (2017). Assessing the potential of images from unmanned aerial vehicles (UAV) to support herbicide patch spraying in maize. Precision Agriculture, 18(1), 76–94.Google Scholar
  12. Chilès, J. P., & Delfiner, P. (2012). Geostatistics: modeling spatial uncertainty (2nd ed.). New York: Wiley.Google Scholar
  13. Christensen, S., Søgaard, H. T., Kudsk, P., Nørremark, M., Lund, I., Nadimi, S., et al. (2009). Site specific weed control technologies. Weed Research, 49(3), 233–241.Google Scholar
  14. Colbach, N., Forcella, F., & Johnson, G. A. (2000). Spatial and temporal stability of weed populations over five years. Weed Science, 48(3), 366–377.Google Scholar
  15. De Castro, A. I., Torres-Sánchez, J., Peña, J. M., Jiménez-Brenes, F. M., Csillik, O., & López-Granados, F. (2018). An automatic random forest-OBIA algorithm for early weed mapping between and within crop Rows using UAV imagery. Remote Sensing, 10(2), 285.  https://doi.org/10.3390/rs10020285.Google Scholar
  16. Dille, J. A., Milner, M., Groeteke, J. J., Mortensen, D. A., & Williams, M. M. (2003). How good is your weed map? A comparison of spatial interpolators. Weed Science, 51(1), 44–55.Google Scholar
  17. Donald, W. W. (1994). Geostatistics for mapping weeds, with a Canada thistle (Cirsium arvense) patch as a case study. Weed Science, 42(4), 648–657.Google Scholar
  18. Emery, X. (2012). Cokriging random fields with means related by known linear combinations. Computers & Geosciences, 38(1), 136–144.Google Scholar
  19. Everitt, J. H., & Villarreal, R. (1987). Detecting huisache (Acacia farnesiana) and mexican palo-verde (Parkinsonia aculeata) by aerial photography. Weed Science, 35, 427–432.Google Scholar
  20. Gerhards, R., & Christensen, S. (2006). Site-Specific Weed Management. In A. Srinivasan (Ed.), Handbook of Precision Agriculture principles and Applications (pp. 185–206). New York: Food Products Press, The Haworth Press.Google Scholar
  21. Gitelson, A. A., Kaufman, Y. J., Stark, R., & Rundquist, D. (2002). Novel algorithms for remote estimation of vegetation fraction. Remote Sensing of Environment, 80(1), 76–87.Google Scholar
  22. Goovaerts, P. (1997). Geostatistics for natural resources evaluation. New York: Oxford University Press.Google Scholar
  23. Goovaerts, P. (2000). Geostatistical approches for incorporating elevation into the spatial interpolation of rainfall. Journal of Hydrology, 228(1–2), 113–129.Google Scholar
  24. Heisel, T., Andreasen, C., & Ersbøll, A. K. (1996). Annual weed densities can be mapped with kriging. Weed Research, 36(4), 325–337.Google Scholar
  25. Heisel, T., Ersboll, A., & Andreasen, C. (1999). Weed mapping with co-kriging using soil properties. Precision Agriculture, 1(1), 39–52.Google Scholar
  26. Hernández-Stefanoni, J. L., Gallardo-Cruz, J. A., Meave, J. A., & Dupuy, J. M. (2011). Combining geostatistical models and remotely sensed data to improve tropical tree richness mapping. Ecological Indicators, 11(5), 1046–1056.Google Scholar
  27. Hevesi, J. A., Istok, J. D., & Flint, A. L. (1992). Precipitation estimation in mountains terrain using multivariate geostatistics Part I: structural analysis. Journal of Applied Meteorology, 31(1), 661–676.Google Scholar
  28. Holm, L., Doll, J., Holm, E., Pancho, J., & Herbereger, J. (1997). Papaver rhoeas L. In John Wiley and Sons (Ed.), World weeds natural histories and distribution (pp. 555–561). New York: Academic Press.Google Scholar
  29. Huang, Y., Reddy, K. N., Fletcher, R. S., & Pennington, D. (2017). UAV low-altitude remote sensing for precision weed management. Weed Technology.  https://doi.org/10.1017/wet.2017.89.Google Scholar
  30. Isaaks, E. H., & Srivastava, R. M. (1989). An introduction to applied geostatistics. New York: Oxford University.Google Scholar
  31. Izquierdo, J., Blanco-Moreno, J., Chamorro, L., Recasens, J., & Sans, F. (2009). Spatial distribution and temporal stability of prostrate knotweed (Polygonum aviculare) and corn poppy (Papaver rhoeas) Seed bank in a cereal field. Weed Science, 57(5), 505–511.Google Scholar
  32. Jordan, C. F. (1969). Derivation of leaf area index from quality of light on the forest floor. Ecology, 50(4), 663–666.Google Scholar
  33. Journel, A., & Huijbregts, C. (1978). Mining geostatistics. New York: Academic Press.Google Scholar
  34. Jurado-Expósito, M., López-Granados, F., García-Torres, L., García-Ferrer, A., Sánchez de la Orden, M., & Atenciano, S. (2003). Multi-species weed spatial variability and site-specific management maps in cultivated sunflower. Weed Science, 51(3), 319–328.Google Scholar
  35. Jurado-Expósito, M., López-Granados, F., Peña-Barragán, J. M., & García-Torres, L. (2009). A digital elevation model to aid geostatistical mapping of weeds in sunflower crops. Agronomy for Sustainable Development, 29(2), 391–400.Google Scholar
  36. Kalivas, D. P., Christos, E. V., Garifalia, E., & Paraskevi, D. (2012). Regional mapping of perennial weeds in cotton with the use of geostatistics. Weed Science, 60(2), 233–243.Google Scholar
  37. Kerry, R., & Oliver, M. (2003). Variograms of ancillary data of aid sampling for soil surveys. Precision Agriculture, 4(3), 261–278.Google Scholar
  38. Kumar, L., Schmidt, K. S., Dury, S., & Skidmore, A. K. (2001). Imaging spectrometry and vegetation science. In F. van der Meer & S. M. de Jong (Eds.), Imaging spectrometry (pp. 111–155). Dordrecht: Kluwer Academic.Google Scholar
  39. Lambert, J. P. T., Hicks, H. L., Childs, D. Z., & Freckleton, R. P. (2018). Evaluating the potential of Unmanned Aerial Systems for mapping weeds at field scales: a case study with Alopecurus myosuroides. Weed Research, 58(1), 35–45.Google Scholar
  40. Li, J., & Heap, A. D. (2011). A review of comparative studies of spatial interpolation methods in environmental sciences: Performance and impact factors. Ecological Informatics, 6, 228–241.Google Scholar
  41. López-Granados, F., Jurado-Expósito, M., Peña-Barragán, J. M., & García-Torres, L. (2005). Using geoestatistical and remote sensing approaches for mapping soil properties. European Journal of Agronomy, 23(3), 279–289.Google Scholar
  42. López-Granados, F., Torres-Sánchez, J., De Castro, A. I., Serrano-Pérez, A., Mesas-Carrascosa, F. J., & Peña, J. M. (2016). Object-based early monitoring of a grass weed in a grass crop using high resolution UAV imagery. Agronomy for Sustainable Development, 36, 67.  https://doi.org/10.1007/s13593-016-0405-7.Google Scholar
  43. Lottes, P., Khanna, R., Pfeifer, J., Siegwart, R., & Stachniss, C. (2017). UAV-based crop and weed classification for smart farming. In IEEE International Conference on Robotics and Automation (ICRA), 3024–3031,  https://doi.org/10.1109/icra.2017.7989347.
  44. Matheron, G. (1970). The theory of regionalized variables and its applications. Ecole Nationale Supérieure des Mine, 5, 212.Google Scholar
  45. Meng, Q. M., Cieszewski, C., & Madden, M. (2009). Large area forest inventory using Landsat ETM plus: A geostatistical approach. ISPRS Journal of Photogrammetry and Remote Sensing, 64(1), 27–36.Google Scholar
  46. Mesas-Carrascosa, F. J., Clavero-Rumbao, I., Torres-Sánchez, J., García-Ferrer, A., Peña, J. M., & López-Granados, F. (2017). Accurate ortho-mosaicked six-band multispectral UAV images as affected by mission planning for precision agriculture proposes. International Journal of Remote Sensing, 38(8–10), 2161–2176.Google Scholar
  47. Mesas-Carrascosa, F. J., Torres-Sánchez, J., Clavero-Rumbao, I., García-Ferrer, A., Peña, J. M., Borra-Serrano, I., et al. (2015). Assessing optimal flight parameters for generating accurate multispectral orthomosaicks by UAV to support site-specific crop management. Remote Sensing, 7(10), 12793–12814.Google Scholar
  48. Meyer, G. E., Camargo-Neto, J., Jones, D. D., & Hindman, T. W. (2004). Intensified fuzzy clusters for classifying plant, soil, and residue regions of interest from colour images. Computers and Electronics in Agriculture, 42, 161–180.Google Scholar
  49. Mutanga, O., & Rugege, D. (2006). Integrating remote sensing and spatial statistics to model biomass distribution in a tropical savanna. International Journal of Remote Sensing, 27(19), 3499–3514.Google Scholar
  50. National Research Council. (1997). Precision agriculture in the 21st century: Geospatial and information technologies in crop management. Washington, DC: National Academy Press.Google Scholar
  51. Oliver, M. A. (2010). Geostatistical applications for precision agriculture. New York, NY: Springer.Google Scholar
  52. Papritz, A., & Stein, A. (1999). Spatial prediction by linear kriging. In A. Stein (Ed.), Spatial statistics for remote sensing. Dordrecht: Kluwer.Google Scholar
  53. Peña, J. M., Torres-Sánchez, J., de Castro, A. I., Kelly, M., & López-Granados, F. (2013). Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) images. PLoS ONE, 8(10), e77151.  https://doi.org/10.1371/journal.pone.0077151.Google Scholar
  54. Rasmussen, J., Nielsen, J., Garcia-Ruiz, F., Christensen, S., & Streibig, J. C. (2013). Potential uses of small unmanned aircraft systems (UAS) in weed research. Weed Research, 53(4), 242–248.Google Scholar
  55. Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1973). Monitoring vegetation systems in the greant plains with ERTS. Proceedings of the Earth Resources Technology Satellite Symposium NASA SP-351, vol 1 (pp. 309–317). Washington, DC.Google Scholar
  56. Schirrmann, M., Hamdorf, A., Giebel, A., Gleiniger, F., Pflanz, M., & Dammer, K. (2017). Regression kriging for improving crop height models fusing ultra-sonic Sensing with UAV imagery. Remote Sensing, 9, 665.  https://doi.org/10.3390/rs9070665.Google Scholar
  57. Simbahan, G. C., Dobermann, A., Goovearts, P., Ping, J., & Haddix, M. (2006). Fine resolution mapping of soil organic carbon based on multivariate secondary data. Geoderma, 132(3–4), 471–489.Google Scholar
  58. Taberner, A., Anguera, R., Cirujeda, A., & Tarago, R. (2001). Situación actual de las resistencias de Lolium rigidum y Papaver rhoeas en cereales de invierno. Phytoma, 132, 33–35.Google Scholar
  59. Thenkabail, P. S., Smith, R. B., & De Pauw, E. (2000). Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sensing of Environment, 71, 158–182.Google Scholar
  60. Torra, J., Cirujeda, A., Taberner, A., & Recasens, J. (2010). Evaluation of herbicides to manage herbicide-resistant corn poppy (Papaver rhoeas) in winter cereals. Crop Protection, 29(7), 731–736.Google Scholar
  61. Torra, J., Gonzalez-Andujar, J. L., & Recasens, J. (2008). Modelling the population dynamics of Papaver rhoeas under various weed management systems in a Mediterranean climate. Weed Research, 48(2), 136–146.Google Scholar
  62. Torra, J., & Recasens, J. (2008). Demography of corn poppy (Papaver rhoeas) in relation to emergence time and crop competition. Weed Science, 56(6), 826–833.Google Scholar
  63. Torres-Sánchez, J., López-Granados, F., De Castro, A. I., & Peña-Barragán, J. M. (2013). Configuration and specifications of an unmanned aerial vehicle (UAV) for early site specific weed management. Plos ONE, 8(3), e58210.  https://doi.org/10.1371/journal.pone.0058210.Google Scholar
  64. Tucker, C. J. (1977). Asymptotic nature of grass canopy spectral reflectance. Applied Optics, 16(5), 1151–1156.Google Scholar
  65. Van der Meer, F. (2012). Remote-sensing image analysis and geostatistics. International Journal of Remote Sensing, 33(18), 5644–5676.Google Scholar
  66. Wackernagel, H. (2003). Multivariate Geostatistics: An introduction with applications (3rd ed.). Berlin: Springer-Verlag.Google Scholar
  67. Walter, A. M., Christensen, S., & Simmelsgaard, S. E. (2002). Spatial correlation between weed species densities and soil properties. Weed Research, 42(1), 26–38.Google Scholar
  68. Webster, R., & Oliver, M. A. (2007). Geostatistics for environmental scientists (2nd ed.). Chichester: John Wiley and Sons, Ltd.Google Scholar
  69. Wilson, B. J., Wright, K. J., Brain, P., Clements, M., & Stephens, E. (1995). Predicting the competitive effects of weed and crop density on weed biomass, weed production and crop yield in wheat. Weed Research, 35(4), 265–278.Google Scholar
  70. Woebbecke, D. M., Meyer, G. E., Von Bargen, K., & Mortensen, D. A. (1995). Color indices for weed identification under various soil, residue, and lighting conditions. Transactions of the ASAE, 38(1), 259–269.Google Scholar
  71. Yao, H., & Huang, Y. (2013). Remote sensing applications to precision farming. In G. Wang & Q. Weng (Eds.), Remote sensing of natural resources (pp. 333–352). Boca Raton, FL: CRC.Google Scholar
  72. Zhang, C., & Kovacs, J. (2012). The application of small unmanned aerial systems for precision agriculture: A review. Precision Agriculture, 13(6), 693–712.Google Scholar
  73. Zhang, N., Wang, M., & Wang, N. (2002). Precision agriculture: A worldwide overview. Computers and Electronics in Agriculture, 36(2–3), 113–132.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute for Sustainable Agriculture, CSICCórdobaSpain

Personalised recommendations