Advertisement

Precision Agriculture

, Volume 20, Issue 4, pp 649–662 | Cite as

Modeling and design of an injection dosing system for site-specific management using liquid fertilizer

  • M. J. da SilvaEmail author
  • P. S. Graziano Magalhães
Article
  • 172 Downloads

Abstract

A variable rate of fertilizer according to plant demand and placement (50–100 mm deep) beside roots are essential principles for improving nitrogen use efficiency in growing crops. The objective of this study was to develop an injection dosing system that aligns with site-specific management of nitrogen fertilizer. The implementation considered a process that combines soil perforation and liquid fertilizer injection, which improves fertilizer uptake by the plant. Soil punching can provide nutrients near the plant roots, causing minimal disturbance to roots, crop residues and soil. Liquid fertilizer injection synchronized with soil punching at a variable fertilizer rate was the central idea applied in the design. Based on these requirements, an innovative injection dosing unit was developed. The hydraulic system was modeled inside the Simulink environment, which is linked to Matlab. The program considered the hydraulic elements (primary dimensions) and liquid fertilizer application conditions (forward speed, inter-row spacing of crops and liquid fertilizer rate, source and nutrient concentration). The outputs (simulations of outlet flow, dosage, hydraulic pressure and hydraulic power demand) were essential estimates that assisted in analysis and design. In general, the simulations were analogous to the experimental measurements. Dosage control was applied along a representative range (5–18 ml cycle−1) that allowed application using a variable rate. The liquid fertilizer was injected during soil perforation, from 50 to 100 mm deep. These characteristics can help implement better practices for nutrient stewardship, which are especially relevant for nitrogen fertilization in growing crops, such as sugarcane fields.

Keywords

Sugarcane Management practices Nitrogen fertilizer Agricultural machinery Variable rate 

Notes

Acknowledgements

The authors thank the National Research Council of Brazil (CNPq) for sponsorship (Processes 475855/2011-6) and scholarships to the authors (Processes 160123/2013-5 and 307362/2014-0), and FAPESP (Process 2014/1496-50).

References

  1. Baker, J., Colvin, T., Marley, S., & Dawelbeit, M. (1989). A point-injector applicator to improve fertilizer management. Applied Engineering in Agriculture, 5, 334–338.  https://doi.org/10.13031/2013.26523.CrossRefGoogle Scholar
  2. Bautista, E. U., Koike, M., & Suministrado, D. C. (2001). Mechanical deep placement of nitrogen in wetland rice. Journal of Agricultural Engineering Research, 78(4), 333–346.  https://doi.org/10.1006/jaer.2000.0675.CrossRefGoogle Scholar
  3. Bianchini, A., Valadão, D. D., Jr., Rosa, R. P., Colhado, F., & Daros, R. F. (2014). Soil chiseling and fertilizer location in sugarcane ratoon. Engenharia Agrícola, 34(1), 57–65.  https://doi.org/10.1590/S0100-69162014000100007.CrossRefGoogle Scholar
  4. Boaretto, A. E., Cruz, A. P., & Luz, P. H. C. (1991). Adubo líquido: produção e uso no Brasil (Liquid fertilizers in Brazil: production and use). Campinas, SP, Brazil: Fundação Cargil. (in Portuguese).Google Scholar
  5. Campbell, C. M., Fulton, J. P., Wood, C. W., Mcdonald, T. P., & Zech, W. C. (2015). Utilizing nutrient over mass distribution patterns for assessment of Poultry litter spreaders. Transactions of the ASABE, 53(3), 659–666.CrossRefGoogle Scholar
  6. Cantarella, H., & Rossetto, R. (2010). Fertilizers for sugarcane. In L. A. B. Cortez (Ed.), Sugarcane bioethanol R&D for productivity and sustainability (First., pp. 405–422). São Paulo, Brazil: Blucher & Fapesp.Google Scholar
  7. Castro, S. G. Q., Decaro, S. T., Franco, H. C. J., Magalhães, P. S. G., Garside, A., & Mutton, M. A. (2017). Best practices of nitrogen fertilization management for sugarcane under green cane trash blanket in Brazil. Sugar Tech, 19(1), 51–56.  https://doi.org/10.1007/s12355-016-0443-0.CrossRefGoogle Scholar
  8. Chen, Y., & Ren, X. (2002). High performance tool for liquid manure injection. Soil and Tillage Research, 67(1), 75–83.  https://doi.org/10.1016/S0167-1987(02)00057-0.CrossRefGoogle Scholar
  9. Chien, S. H., Prochnow, L. I., & Cantarella, H. (2009). Chapter 8 recent developments of fertilizer production and use to improve nutrient efficiency and minimize environmental impacts. advances in agronomy (1st ed., Vol. 102). New York, United States: Elsevier.  https://doi.org/10.1016/s0065-2113(09)01008-6
  10. CONAB. (2017). Acompanhamento da safra de cana-de-açúcar: segundo levantamento (Monitoring of sugarcane harvest: the second survey). Retrieved April 14, 2018, from https://www.conab.gov.br/index.php/info-agro/safras/cana. (in Portuguese)
  11. Costa, M. C. G., Vitti, G. C., & Cantarella, H. (2003). N-NH3 losses from nitrogen sources applied over unburned sugarcane straw. Revista Brasileira de Ciência do Solo, 27(4), 631–637.  https://doi.org/10.1590/S0100-06832003000400007.CrossRefGoogle Scholar
  12. Dordas, C. (2015). Nutrien management perspectives in conservation agriculture. In M. Farooq & K. H. M. Siddique (Eds.), Farooq & SiddiqueConservation agriculture (book). (1st ed.). Berlin, Germany: Springer.  https://doi.org/10.1007/978-3-319-11620-4
  13. Fortes, C., Trivelin, P. C. O., & Vitti, A. C. (2012). Long-term decomposition of sugarcane harvest residues in Sao Paulo state, Brazil. Biomass and Bioenergy, 42, 189–198.  https://doi.org/10.1016/j.biombioe.2012.03.011.CrossRefGoogle Scholar
  14. Fracetto, F. J. C., Fracetto, G. G. M., Bertini, S. C. B., Cerri, C. C., Feigl, B. J., & Siqueira Neto, M. (2017). Effect of agricultural management on N2O emissions in the Brazilian sugarcane yield. Soil Biology & Biochemistry, 109, 205–213.  https://doi.org/10.1016/j.soilbio.2017.02.004.CrossRefGoogle Scholar
  15. Fulton, J. P., Shearer, S. A., Chabra, G., & Higgins, S. F. (2001). Performance assessment and model development of a variable-rate, spinner-disc fertilizer applicator. Transactions of the ASAE, 44(5), 1071–1081.CrossRefGoogle Scholar
  16. IPNI. (2017). 10 years of progress. International Plant Nutrition Institute. Retrieved April 09, 2018, from http://www.ipni.net/ipniweb/portal/pr2017.nsf/.
  17. Kaliatka, A., Vaišnoras, M., & Valinčius, M. (2014). Modelling of valve induced water hammer phenomena in a district heating system. Computers & Fluids, 94, 30–36.  https://doi.org/10.1016/j.compfluid.2014.01.035.CrossRefGoogle Scholar
  18. Karney, B. W., & Simpson, A. R. (2007). In-line check valves for water hammer control. Journal of Hydraulic Research, 45, 547–554.  https://doi.org/10.1080/00221686.2007.9521790.CrossRefGoogle Scholar
  19. Knutson, A. L., & Van de Ven, J. D. (2016). Modelling and experimental validation of the displacement of a check valve in a hydraulic piston pump. International Journal of Fluid Power, 9776(April), 1–11.  https://doi.org/10.1080/14399776.2016.1160718.Google Scholar
  20. Korndörfer, G. H., Anderson, D. L., Mundim, V. C., & Simões, M. S. (1995). Produção de adubos fluidos para cana-de-. (Liquid fertilizer production for sugarcane). Revista STAB, 14(2), 25–29. (in Portuguese).Google Scholar
  21. Leal, M. R., Galdos, M. V., Scarpare, F. V., Seabra, J. E. A., Walter, A., & Oliveira, C. O. F. (2013). Sugarcane straw availability, quality, recovery and energy use: A literature review. Biomass and Bioenergy, 53, 11–19.  https://doi.org/10.1016/j.biombioe.2013.03.007.CrossRefGoogle Scholar
  22. Liu, T. Q., Fan, D. J., Zhang, X. X., Chen, J., Li, C. F., & Cao, C. G. (2015). Deep placement of nitrogen fertilizers reduces ammonia volatilization and increases nitrogen utilization efficiency in no-tillage paddy fields in central China. Field Crops Research, 184, 80–90.  https://doi.org/10.1016/j.fcr.2015.09.011.CrossRefGoogle Scholar
  23. Magalhães, P. S. G., & Silva, M. J. (2013). Equipamento com princípio de puncionamento para aplicação localizada de adubo líquido em profundidade (Soil punching equipment for site-specific management of liquid fertilizer). Rio de Janeiro, Brazil: Instituto Nacional de Propriedade Industrial. Patent BR 1020130182133Google Scholar
  24. Meng, H. B., Liu, Y., & Li, Y. (2012). Experiment on water hammer protection performances of the shuttle check valve in multi-pump parallel connection system. Applied Mechanics and Materials, 192, 37–41.  https://doi.org/10.4028/www.scientific.net/AMM.192.37.CrossRefGoogle Scholar
  25. Mohanty, S. K., Singh, U., Balasubramanian, V., & Jha, K. P. (1999). Nitrogen deep-placement technologies for productivity, profitability, and environmental quality of rainfed lowland rice systems. Nutrient Cycling in Agroecosystems, 53(1), 43–57.  https://doi.org/10.1023/A:1009731922431.CrossRefGoogle Scholar
  26. NBR-ISO-5167. (1994). Medição de vazão de fluidos por meio de instrumentos de pressãoparte 1 (Measurement of fluid flow by means of pressuredifferential devices—Part 1). Rio de Janeiro, Brazil: ABNT-Associação Brasileira de Normas Técnicas. (in Portuguese)Google Scholar
  27. Niemoeller, B., Harms, H. H., & Lang, T. (2011). Injection of liquids into the soil with a high-pressure jet. Agricultural Engineering International: CIGR Journal, 13(2), 1–15.Google Scholar
  28. Nyord, T., Kristensen, E. F., Munkholm, L. J., & Jorgensen, M. H. (2010). Design of a slurry injector for use in a growing cereal crop. Soil and Tillage Research, 107(1), 26–35.  https://doi.org/10.1016/j.still.2010.01.001.CrossRefGoogle Scholar
  29. Nyord, T., Søgaard, H. T., Hansen, M. N., & Jensen, L. S. (2008). Injection methods to reduce ammonia emission from volatile liquid fertilisers applied to growing crops. Biosystems Engineering, 100(2), 235–244.  https://doi.org/10.1016/j.biosystemseng.2008.01.013.CrossRefGoogle Scholar
  30. Otto, R., Castro, S. A. Q., Mariano, E., Castro, S. G. Q., Franco, H. C. J., & Trivelin, P. C. O. (2016). Nitrogen use efficiency for sugarcane-biofuel production: What is next? BioEnergy Research, 1, 1–18.  https://doi.org/10.1007/s12155-016-9763-x.Google Scholar
  31. Prado, R. M., & Pancelli, M. A. (2006). Nutrição nitrogenada em soqueiras e a qualidade tecnológica da cana-de-Açúcar (Nitrogen fertilizer nutrition and technological quality of sugarcane). STAB, 25(2), 60–63.Google Scholar
  32. Prasertsak, P., Freney, J. R., Denmead, O. T., Saffigna, P. G., & Prove, B. G. (2002). Effect of fertilizer placement on nitrogen loss from sugarcane in tropical Queensland. Nutrient Cycling in Agroecosystems, 62(3), 229–239.  https://doi.org/10.1023/A:1021279309222.CrossRefGoogle Scholar
  33. Silva, M. J., Franco, H. C. J., & Magalhães, P. S. G. (2017). Liquid fertilizer application to ratoon cane using a soil punching method. Soil & Tillage Research, 165, 279–285.  https://doi.org/10.1016/j.still.2016.08.020.CrossRefGoogle Scholar
  34. Virk, S. S., Mullenix, D. K., Sharda, A., Hall, B. J., Wood, C. W., Fasina, O. O., et al. (2013). Case study: Distribution uniformity of a blended fertilizer applied using a variable-rate spinner-disc spreader. Applied Engineering in Agriculture, 29(5), 627–636.  https://doi.org/10.13031/aea.29.9774.Google Scholar
  35. Weber, C., & McCann, L. (2015). Adoption of nitrogen-efficient technologies by U.S. corn farmers. Journal of Environment Quality, 44(2), 391–401.  https://doi.org/10.2134/jeq2014.02.0089.CrossRefGoogle Scholar
  36. Xu, H., Guang, Z. M., & Qi, Y. Y. (2011). Hydrodynamic characterization and optimization of Contra-push check valve by numerical simulation. Annals of Nuclear Energy, 38(6), 1427–1437.  https://doi.org/10.1016/j.anucene.2011.01.013.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of Paraná - UFPRJandaia do Sul-PRBrazil
  2. 2.School of Agricultural Engineering, State University of Campinas – UNICAMPCampinas-SPBrazil

Personalised recommendations