Using low-cost geophysical survey to map soil properties and delineate management zones on grazed permanent pastures

  • Francisco J. MoralEmail author
  • João M. Serrano


Usually, soils utilised for livestock production have similar high spatial variability as those for agricultural or forest use. As a consequence, it is necessary to determine the spatial patterns of the main soil properties as the first stage to implement site-specific management. However, this has to be performed using an inexpensive technique because the profitability in these types of farm are very low, so owners need a cheap, effective, and reliable method to know which zones have similar production potential. Using soil apparent electrical conductivity (ECa) measurements, obtained with a contact sensor at many locations, as the basis to perform a directed soil sampling, 10 samples were taken at two depths (0–0.25 m and 0.25–0.50 m) in a 2.3 ha field in Évora (southern Portugal). Firstly, relationships between ECa and many soil properties were analysed using regression analysis. Six soil properties (clay, silt, fine sand, soil moisture content, pH, and cation exchange capacity) were significantly correlated with ECa. Consequently, spatial distributions of these variables were visualised using map algebra techniques. Later, a fuzzy clustering algorithm was utilised to delineate management zones, resulting in two subfields to be managed separately. Finally, a principal component analysis was conducted to analyse the influence of the soil properties and elevation on the soil variability. It was determined that elevation and clay were the most important contributing properties. Therefore, these can be regarded as key latent variables in this soil. Results showed that low-cost data based on ECa surveys can be used to implement site-specific management in soils with permanent pastures, such as those in the montado or dehesa ecosystems, in the southwest of the Iberian Peninsula.


Site-specific management Contact sensor Soil apparent electrical conductivity Principal component analysis 



This research was funded by the Junta de Extremadura and the European Regional Development Fund (ERDF) through the Project GR15050 (Research Group TIC008), by ERDF through the Operational Programme for Competitiveness Factors: COMPETE and National Funds through FCT: Foundation for Science and Technology under the Strategic Project PEst-C/AGR/UI0115/2011 and under the FCT Project: EXCL_AGR-TEC_0336_2012, and also by ERDF and the Spanish Ministry of Economy and Competitiveness through the Project AGL2015-65036-C3-3-R. The authors are also very grateful to two anonymous reviewers for providing constructive comments which contributed to improve the final version of this paper.


  1. An, Y., Yang, L., Zhu, A.-X., Qin, C., & Shi, J. J. (2018). Identification of representative samples from existing samples for digital soil mapping. Geoderma, 311, 109–119.CrossRefGoogle Scholar
  2. Benavides, R., Douglas, G. B., & Osoro, K. (2009). Silvopastoralism in New Zealand: Review of effects of evergreen and deciduous trees on pasture dynamics. Agroforestry Systems, 76, 327–350.CrossRefGoogle Scholar
  3. Bernardi, A. C. C., Bettiol, G. M., Ferreira, R. P., Santos, K. E. L., Rabello, L. M., & Inamasu, R. Y. (2016). Spatial variability of soil properties and yield of a grazed alfalfa pasture in Brazil. Precision Agriculture, 17(6), 737–752.CrossRefGoogle Scholar
  4. Biswas, A., & Zhang, Y. (2018). Sampling designs for validating digital soil maps: A review. Pedosphere, 28(1), 1–15.CrossRefGoogle Scholar
  5. Bullock, D. S., Ruffo, M. L., Bullock, D. G., & Bollero, G. A. (2009). The value of variable rate technology: An information-theoretical approach. American Journal of Agricultural Economics, 21, 209–223.CrossRefGoogle Scholar
  6. Cambardella, C. A., Moorman, T. B., Novak, J. M., Parkin, T. B., Karlen, D. L., Turco, R. F., et al. (1994). Field-scale variability of soil properties in Central Iowa soils. Soil Science Society of America Journal, 58, 1501–1511.CrossRefGoogle Scholar
  7. Corwin, D. L., & Lesch, S. M. (2003). Application of soil electrical conductivity to precision agriculture: Theory, principles and guidelines. Agronomy Journal, 95(3), 455–471.CrossRefGoogle Scholar
  8. Corwin, D. L., & Lesch, S. M. (2005). Characterizing soil spatial variability with apparent soil electrical conductivity. Part II. Case study. Computers and Electronics in Agriculture, 46, 135–152.CrossRefGoogle Scholar
  9. De Bruyn, L. L., & Andrews, S. (2016). Are Australian and United States farmers using soil information for soil health management? Sustainability, 8, 304.CrossRefGoogle Scholar
  10. Egner, H., Riehm, H., & Domingo, W. R. (1960). Utersuchungeniiber die chemische Bodenanalyse als Grudlagefiir die Beurteilung des Nahrstoff-zunstandes der Boden. II. K. Lantbrhogsk. Annlr, 20, 199–216. (in German).Google Scholar
  11. Fortes, R., Millán, S., Prieto, M. H., & Campillo, C. (2015). A methodology based on apparent electrical conductivity and guided soil samples to improve irrigation zoning. Precision Agriculture, 16, 441–454.CrossRefGoogle Scholar
  12. Fridgen, J. J., Kitchen, N. R., Sudduth, K. A., Drummond, S. T., Wiebold, W. J., & Fraisse, C. W. (2004). Management Zone Analyst (MZA): Software for subfield management zone delineation. Agronomy Journal, 96, 100–108.CrossRefGoogle Scholar
  13. Friedman, S. P. (2005). Soil properties influencing apparent electrical conductivity: A review. Computers and Electronics in Agriculture, 46, 45–70.CrossRefGoogle Scholar
  14. Fu, W., Zhao, K., Jiang, P., Ye, Z., Tunney, H., & Zhang, C. (2013). Field-scale variability of soil test phosphorus and other nutrients in grasslands under long-term agricultural managements. Soil Research, 51, 503–512.CrossRefGoogle Scholar
  15. Gavioli, A., Souza, E. G., Bazzi, C. L., Guedes, L. P. C., & Schenatto, K. (2016). Optimization of management zone delineation by using spatial principal components. Computers and Electronics in Agriculture, 127, 302–310.CrossRefGoogle Scholar
  16. Gómez-Rey, M. X., Garcês, A., & Madeira, M. (2012). Soil organic-C accumulation and N availability under improved pastures established in Mediterranean Oak Woodlands. Soil Use and Management, 28, 497–507.CrossRefGoogle Scholar
  17. Goovaerts, P. (1997). Geostatistics for natural resources evaluation. New York: Oxford University Press.Google Scholar
  18. Guevara-Escobar, A., Kemp, P. D., Mackay, A. D., & Hodgson, J. (2007). Pasture production and composition under poplar in a hill environment in New Zealand. Agroforestry Systems, 69(3), 199–213.CrossRefGoogle Scholar
  19. Höppner, F., Klawonn, F., Kruse, R., & Runkler, T. A. (1999). Fuzzy cluster analysis. Chichester, UK: Wiley.Google Scholar
  20. Hu, W., Schoenau, J. J., & Si, B. C. (2015). Representative sampling size for strip sampling and number of required samples for random sampling for soil nutrients in direct seeded fields. Precision Agriculture, 16, 385–404.CrossRefGoogle Scholar
  21. IUSS Working Group WRB. (2015). World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. Rome: FAO.Google Scholar
  22. Kitchen, N. R., Sudduth, K. A., & Drummond, S. T. (2000). Characterizing soil physical and chemical properties influencing crop yield using soil electrical conductivity. In 2nd International geospatial information in agriculture and forestry, Lake Buena Vista, FL, USA (pp 122–131).Google Scholar
  23. Li, Y., Shi, Z., Li, F., & Li, H. Y. (2007). Delineation of site-specific management zones using fuzzy clustering analysis in a coastal saline land. Computers and Electronics in Agriculture, 56, 174–186.CrossRefGoogle Scholar
  24. Loescher, H., Ayres, E., Duffy, P., Luo, H., & Brunke, M. (2014). Spatial variation in soil properties among North American ecosystems and guidelines for sampling designs. PLoS ONE, 9(1), e83216.CrossRefGoogle Scholar
  25. Marchant, B. P., Dailey, A. G., & Lark, R. M. (2012). Cost-effective sampling strategies for soil management. Project Report No. 485. Home-Grown Cereals Authority. Retrieved November, 2017, from
  26. Marcos, G. M., Obrador, J. J., Garcia, E., Cubera, E., Montero, M. J., Pulido, F., et al. (2007). Driving competitive and facilitative interactions in oak dehesas through management practices. Agroforestry Systems, 70, 25–40.CrossRefGoogle Scholar
  27. McCormick, S., Jordan, C., & Bailey, J. S. (2009). Within and between-field spatial variation in soil phosphorus in permanent grassland. Precision Agriculture, 10, 262–276.CrossRefGoogle Scholar
  28. Moral, F. J., Terrón, J. M., & Marques da Silva, J. R. (2010). Delineation of management zones using mobile measurements of soil apparent electrical conductivity and multivariate geostatistical techniques. Soil and Tillage Research, 106, 335–343.CrossRefGoogle Scholar
  29. Muhammed, S. E., Marchant, B. P., Webster, R., Whitmore, A. P., Dailey, G., & Milne, A. E. (2017). Assessing sampling designs for determining fertilizer practice from yield data. Computers and Electronics in Agriculture, 135, 163–174.CrossRefGoogle Scholar
  30. Nanni, M. R., Povh, F. P., Dematte, J. A. M., de Oliveira, R. B., Chicati, M. L., & Cezar, E. (2011). Optimum size in grid soil sampling for variable rate application in site-specific management. Scientia Agricola, 68, 386–392.CrossRefGoogle Scholar
  31. Pedrera-Parrilla, A., Martínez, G., Espejo-Pérez, A. J., Gómez, J. A., Giráldez, J. V., & Vanderlinden, K. (2014). Mapping impaired olive tree development using electromagnetic induction surveys. Plant and Soil, 384, 381–400.CrossRefGoogle Scholar
  32. Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen–Geiger climate classification. Hydrology and Earth System Sciences, 11, 1633–1644.CrossRefGoogle Scholar
  33. Peralta, N. R., Cicore, P. L., Marino, M. A., Marques da Silva, J. R., & Costa, J. L. (2015). Use of geophysical survey as a predictor of the edaphic properties variability in soils used for livestock production. Spanish Journal of Agricultural Research, 13(4), e1103.CrossRefGoogle Scholar
  34. Peralta, N. R., & Costa, J. L. (2013). Delineation of management zones with soil apparent electrical conductivity to improve nutrient management. Computers and Electronics in Agriculture, 99, 218–226.CrossRefGoogle Scholar
  35. Saey, T., De Smedt, P., De Clercq, W., Meerschman, E., Islam, M. M., & Van Meirvenne, M. (2013). Identifying soil patterns at different spatial scales with a multi-receiver EMI sensor. Soil Science Society of America Journal, 77(2), 382–390.CrossRefGoogle Scholar
  36. Sales-Baptista, E., Ferraz de Oliveira, I., Brandão dos Santos, M., Lopes de Castro, J. A., Pereira, A., Marques, J. R., et al. (2016). Tecnologia GNSS de baixo custo na monitorização de ovinos em pastoreio. Revista de Ciências Agrárias, 39(2), 251–260.CrossRefGoogle Scholar
  37. Schellberg, J., Hill, M. J., Gerhards, R., Rothmund, M., & Braun, M. (2008). Precision agriculture on grassland: Applications, perspectives and constraints. European Journal of Agronomy, 29(2–3), 59–71.CrossRefGoogle Scholar
  38. Serrano, J., Peca, J., Marques da Silva, J., & Shahidian, S. (2010). Mapping soil and pasture variability with an electromagnetic induction sensor. Computers and Electronics in Agriculture, 73, 7–16.CrossRefGoogle Scholar
  39. Serrano, J., Shahidian, S., & Marques da Silva, J. (2013). Small scale soil variation and its effect on pasture yield in southern Portugal. Geoderma, 195–196, 173–183.CrossRefGoogle Scholar
  40. Serrano, J., Shahidian, S., & Marques da Silva, J. (2014). Spatial and temporal patterns of apparent electrical conductivity: DUALEM vs. Veris sensors for monitoring soil properties. Sensors, 14(6), 10024–10041.CrossRefGoogle Scholar
  41. Serrano, J., Shahidian, S., Marques da Silva, J., Machado, E., & Carvalho, M. (2018). Avaliação do efeito das árvores sobre a produtividade e sobre a qualidade da pastagem no ecossistema montado: estudo de caso. Revista de Ciências Agrárias, 41(1), 72–81.CrossRefGoogle Scholar
  42. Serrano, J., Shahidian, S., Marques da Silva, J., Sales-Baptista, E., Ferraz De Oliveira, I., Lopes De Castro, J., et al. (2017). Tree influence on soil and pasture: Contribution of proximal sensing to pasture productivity and quality estimation in montado ecosystems. International Journal of Remote Sensing, 14(6), 10024–10041. Scholar
  43. Shaddad, S. M., Madrau, S., Castrignanò, A., & Mouazen, A. M. (2016). Data fusion techniques for delineation of site-specific management zones in a field in UK. Precision Agriculture, 17, 200–217.CrossRefGoogle Scholar
  44. Shaner, D. L., Khosla, R., Brodahl, M. K., Buchleiter, G. W., & Farahani, H. J. (2008). How well does zone sampling based on soil electrical conductivity maps represent soil variability? Agronomy Journal, 100, 1472–1480.CrossRefGoogle Scholar
  45. Shi, Z., Wang, K., Bailey, J. S., Jordan, C., & Higgins, J. (2000). Sampling strategies fro mapping soil phosphorus and soil potassium distributions in cool temperate grassland. Precision Agriculture, 2, 347–357.CrossRefGoogle Scholar
  46. Stadler, A., Rudolph, S., Kupisch, M., Langensiepen, M., van der Kruk, J., & Ewert, F. (2015). Quantifying the effects of soil variability on crop growth using apparent soil electrical conductivity measurements. European Journal of Agronomy, 64, 8–20.CrossRefGoogle Scholar
  47. Stumpf, F., Schmidt, K., Goebes, P., Behrens, T., Schönbrodt-Stitt, S., Wadoux, A., et al. (2017). Uncertainty-guided sampling to improve digital soil maps. CATENA, 153, 30–38.CrossRefGoogle Scholar
  48. Sudduth, K. A., Kitchen, N. R., Wiebold, W. J., Batchelor, W. D., Bollero, G. A., Bullock, D. G., et al. (2005). Relating apparent electrical conductivity top soil properties across the North-Central USA. Computers and Electronics in Agriculture, 46, 263–283.CrossRefGoogle Scholar
  49. Tagarakis, A., Liakos, V., Fountas, S., Koundouras, S., & Gemtos, T. A. (2013). Management zones delineation using fuzzy clustering techniques in grapevines. Precision Agriculture, 14, 18–39.CrossRefGoogle Scholar
  50. Trotter, M., Guppy, C., Haling, R., Trotter, T., Edwards, C., & Lamb, D. (2014). Spatial variability in pH and key soil nutrients: Is this an opportunity to increase fertiliser and lime-use efficiency in grazing systems? Crop and Pasture Science, 65, 817–827.CrossRefGoogle Scholar
  51. Wetterlind, J., Stenberg, B., & Södersröm, M. (2008). The use of near infrared (NIR) spectroscopy to improve soil mapping at the farm scale. Precision Agriculture, 9, 57–69.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Expresión Gráfica, Escuela de Ingenierías IndustrialesUniversidad de ExtremaduraBadajozSpain
  2. 2.Departamento de Engenharia Rural, Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Escola de Ciências e TecnologiaUniversidade de ÉvoraÉvoraPortugal

Personalised recommendations