Advertisement

Precision Agriculture

, Volume 20, Issue 2, pp 193–213 | Cite as

A comparison between mixed support kriging and block cokriging for modelling and combining spatial data with different support

  • A. Castrignanò
  • R. Quarto
  • A. Venezia
  • G. ButtafuocoEmail author
Article
  • 82 Downloads

Abstract

The paper proposes a geostatistical framework to solve the issues of heterogeneous support for spatial estimation. Apparent soil electrical conductivity (ECa) was measured in a field cropped with San Marzano tomato using a multiple frequency electromagnetic profiler with six operating frequencies. Mixed support kriging (MSK) was used to estimate ECa taking into account the change of support. The method includes punctual kriging with the error being the dispersion variance associated with each frequency. The mixed support kriging approach was compared with traditional block cokriging (BCOK) through cross validation. Block cokriging compared to MSK was more computationally intensive to fit the multivariate model of spatial dependence, and in estimating ECa, mixed support kriging outperformed at some frequencies whereas BCOK was more accurate at others. The two approaches were also compared in terms of field-delineation which differed in spatial continuity.

Keywords

Precision agriculture GEM300 Data fusion Change of support Field delineation 

Notes

Acknowledgements

Financial support for this work comes from the Project “M2Q” PON03PE_00180_1 co-funded by the National Operational Program for Research and Competitiveness (PON R&C) 2007–2013, through the European Regional Development Fund (ERDF) and national resource (Revolving Fund—Cohesion Action Plan MIUR). D. M. MIUR n. 738/05.03.2014. The authors thank the reviewers of this paper and Dr. John Stafford for providing constructive comments, which have contributed to the improvement of the published version.

References

  1. Adamchuk, V. I. (2011). Sensor fusion for precision agriculture. In R. A. V. Rossel (Ed.), (Ch. 2). Rijeka, Croatia: IntechOpen.  https://doi.org/10.5772/19983.
  2. Armstrong, M. (1998). Basic linear geostatistics. Berlin, Germany: Springer.  https://doi.org/10.1007/978-3-642-58727-6.CrossRefGoogle Scholar
  3. Bush, E. D. (2010). An overview of the estimation of kimberlite diamond deposits. Southern African Institute of Mining and Metallurgy: Diamonds—source to use 2010 (pp. 73–84). Johannesburg, S Africa: The Southern African Institute of Mining and Metallurgy.Google Scholar
  4. Castanedo, F. (2013). A review of data fusion techniques. The Scientific World Journal.  https://doi.org/10.1155/2013/704504.Google Scholar
  5. Castrignanò, A., Buttafuoco, G., Quarto, R., Parisi, D., Viscarra Rossel, R. A., Terribile, F., et al. (2018). A geostatistical sensor data fusion approach for delineating homogeneous management zones in precision agriculture. Catena, 167, 293–304.  https://doi.org/10.1016/j.catena.2018.05.011.CrossRefGoogle Scholar
  6. Castrignanò, A., Buttafuoco, G., Quarto, R., Vitti, C., Langella, G., Terribile, F., et al. (2017). A combined approach of sensor data fusion and multivariate geostatistics for delineation of homogeneous zones in an agricultural field. Sensors, 17(12), 2794.  https://doi.org/10.3390/s17122794.CrossRefGoogle Scholar
  7. Castrignanò, A., Giugliarini, L., Risaliti, R., & Martinelli, N. (2000). Study of spatial relationships among some soil physico-chemical properties of a field in central Italy using multivariate geostatistics. Geoderma, 97(1–2), 39–60.  https://doi.org/10.1016/S0016-7061(00)00025-2.CrossRefGoogle Scholar
  8. Castrignanò, A., Wong, M. T. F., Stelluti, M., De Benedetto, D., & Sollitto, D. (2012). Use of EMI, gamma-ray emission and GPS height as multi-sensor data for soil characterisation. Geoderma, 175–176, 78–89.  https://doi.org/10.1016/j.geoderma.2012.01.013.CrossRefGoogle Scholar
  9. Chilès, J.-P., & Delfiner, P. (2012). Geostatistics: Modeling spatial uncertainty (2nd ed.). Hoboken, NJ, USA: Wiley.  https://doi.org/10.1002/9781118136188.CrossRefGoogle Scholar
  10. Corwin, D. L., & Lesch, S. M. (2010). Geostatistical applications for precision agriculture. In M. A. Oliver (Ed.), Geostatistical applications for precision agriculture (pp. 139–165). Berlin, Heidelberg, Germany: Springer.  https://doi.org/10.1007/978-90-481-9133-8.CrossRefGoogle Scholar
  11. Cressie, N. A. C. (1993). Statistics for spatial data. New York, USA: Wiley-Blackwell.  https://doi.org/10.1002/9781119115151.ch1.Google Scholar
  12. Daniels, J. J., Vendl, M., Ehsani, M. R., & Allred, B. (2008). Electromagnetic induction methods. In B. Allred, J. J. Daniels, M. R. Ehsani, J. J. Daniels, & M. R. Ehsani (Eds.), Handbook of agricultural geophysics (pp. 109–128). Boca Raton, FL, USA: CRC Press.  https://doi.org/10.1201/9781420019353.Google Scholar
  13. Deutsch, C. V. (2007). A review of geostatistical approaches to data fusion. In Geophysical monograph series (Vol. 171, pp. 7–18). American Geophysical Union (AGU).  https://doi.org/10.1029/171gm03.
  14. Doolittle, J. A., & Brevik, E. C. (2014). The use of electromagnetic induction techniques in soils studies. Geoderma, 223–225, 33–45.  https://doi.org/10.1016/j.geoderma.2014.01.027.CrossRefGoogle Scholar
  15. Emery, X. (2007). On some consistency conditions for geostatistical change-of-support models. Mathematical Geology, 39(2), 205–223.  https://doi.org/10.1007/s11004-006-9073-5.CrossRefGoogle Scholar
  16. Gebbers, R., & Adamchuk, V. I. (2010). Precision agriculture and food security. Science, 327(5967), 828–831.  https://doi.org/10.1126/science.1183899.CrossRefGoogle Scholar
  17. Gelfand, A. E., Zhu, L., & Carlin, B. P. (2001). On the change of support problem for spatio-temporal data. Biostatistics, 2(1), 31–45.  https://doi.org/10.1093/biostatistics/2.1.31.CrossRefGoogle Scholar
  18. Gotway, C. A., & Young, L. J. (2002). Combining incompatible spatial data. Journal of the American Statistical Association, 97(458), 632–648.  https://doi.org/10.1198/016214502760047140.CrossRefGoogle Scholar
  19. Hall, D. L., & McMullen, S. A. H. (2004). Mathematical techniques in multisensor data fusion. Library (2nd ed., Vol. 2). Norwood, MA, USA: Artech House, Inc.  https://doi.org/10.1186/1475-925x-4-23.
  20. Huang, H. (2005). Depth of investigation for small broadband electromagnetic sensors. Geophysics, 70(6), G135.  https://doi.org/10.1190/1.2122412.CrossRefGoogle Scholar
  21. Isaaks, E. H., & Srivastava, R. M. (1989). Applied geostatistics. New York, USA: Oxford University Press.  https://doi.org/10.1016/0040-1951(74)90006-7.Google Scholar
  22. Jackson, J. E. (2003). User’s guide to principal components. New York, USA: Wiley.Google Scholar
  23. Journel, A. G., & Huijbregts, C. J. (1978). Mining geostatistics. London, UK: Academic Press.Google Scholar
  24. Lajaunie, C. (1996). Documentation of the mixed support kriging programs. Fontainebleau, France: Ecole Nationale Superieure des Mines de Paris.Google Scholar
  25. Matheron, G. (1971). The theory of regionalized variables and its applications Les Cahiers du Centre de Morphlogie Mathematique (Vol. 5). Fontainebleau, France: Ecole Nationale Superieure des Mines de Paris.Google Scholar
  26. Matheron, G. (1976). Forecasting block grade distributions: the transfer functions. In M. Guarascio, M. David, & C. J. Huijbregts (Eds.), Advanced geostatistics in the mining industry (pp. 237–251). Dordrecht, The Netherlands: D. Reidel.CrossRefGoogle Scholar
  27. Matheron, G. (1982). Pour une analyse krigeante des données regionalisées (For a factorial kriging analysis of regionalized data). Techinal Report n. 732. Centre de Geostatistique. Fontainebleau, France: Ecole Nationale Superieure des Mines de Paris.Google Scholar
  28. McBratney, A. B., & Lark, R. M. (2018). Scope of pedometrics. In A. B. McBratney, B. Minasny, & U. Stockmann (Eds.), Pedometrics (pp. 7–39). Cham, Switzerland: Springer.  https://doi.org/10.1007/978-3-319-63439-5_1.CrossRefGoogle Scholar
  29. McBratney, A. B., Minasny, B., & Whelan, B. (2011). Defining proximal soil sensing. In V. I. Adamchuk & R. A. ViscarraRossel (Eds.), The second global workshop on proximal soil sensing (pp. 144–146). Montreal, Canada: McGill University.Google Scholar
  30. Mulla, D. J. (2017). Spatial variability in precision agriculture. In S. Shashi, H. Xiong, & X. Zhou (Eds.), Encyclopedia of GIS (pp. 2118–2125). Cham, Switzerland: Springer.  https://doi.org/10.1007/978-3-319-23519-6_1652-1.CrossRefGoogle Scholar
  31. Mulla, D. J., & Schepers, J. S. (1997). Key processes and properties for site specific soil and crop management. In F. J. Pierce & E. J. Sadler (Eds.), The state of site specific management for agriculture (pp. 1–18). Madison, WI, USA: American Society of Agronomy.Google Scholar
  32. Mzuku, M., Khosla, R., Reich, R., Inman, D., Smith, F., & MacDonald, L. (2005). Spatial variability of measured soil properties across site-specific management zones. Soil Science Society of America Journal, 69(5), 1572–1579.  https://doi.org/10.2136/sssaj2005.0062.CrossRefGoogle Scholar
  33. Nguyen, H., Katzfuss, M., Cressie, N., & Braverman, A. (2014). Spatio-temporal data fusion for very large remote sensing datasets. Technometrics, 56(2), 174–185.  https://doi.org/10.1080/00401706.2013.831774.CrossRefGoogle Scholar
  34. Oliver, M. A. (2010). An overview of geostatistics and precision agriculture. Geostatistical applications for precision agriculture (pp. 1–34). Springer, Netherlands: Dordrecht, The Netherlands.  https://doi.org/10.1007/978-90-481-9133-8_1.CrossRefGoogle Scholar
  35. Pinto, A. R., Montez, C., Araújo, G., Vasques, F., & Portugal, P. (2014). An approach to implement data fusion techniques in wireless sensor networks using genetic machine learning algorithms. Information Fusion, 15(1), 90–101.  https://doi.org/10.1016/j.inffus.2013.05.003.CrossRefGoogle Scholar
  36. Reynolds, J. M. (2011). An introduction to applied and environmental geophysics. Igarss 2014 (2nd ed.). Chichester, UK: Wiley.  https://doi.org/10.1007/s13398-014-0173-7.2.Google Scholar
  37. Rivoirard, J. (1994). Introduction to disjunctive kriging and non-linear geostatistics. Oxford, UK: Clarendon Press.Google Scholar
  38. Soil Survey Staff (2014). Keys to Soil Taxonomy, 2010. In Change (Vol. 11 ed.). Washington, DC, USA.  https://doi.org/10.1109/tip.2005.854494.
  39. Stenberg, B., Viscarra Rossel, R. A., Mouazen, A. M., & Wetterlind, J. (2010). Visible and near infrared spectroscopy in soil science. In Advances in agronomy (Vol. 107, pp. 163–215). Burlington, USA: Academic Press.  https://doi.org/10.1016/s0065-2113(10)07005-7.
  40. Wackernagel, H. (2003). Multivariate geostatistics: An introduction with applications. Berlin, Heidelberg, Germany: Springer.CrossRefGoogle Scholar
  41. Webster, R. (1991). Local disjunctive kriging of soil properties with change of support. Journal of Soil Science, 42(2), 301–318.  https://doi.org/10.1111/j.1365-2389.1991.tb00411.x.CrossRefGoogle Scholar
  42. Webster, R., & Oliver, M. A. (2007). Geostatistics for environmental scientists. Chichester, UK: Wiley.  https://doi.org/10.1002/9780470517277.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National Research Council of Italy - Institute for Agricultural and Forest Systems in the Mediterranean (ISAFOM)RendeItaly
  2. 2.Earth and Geoenvironmental Sciences DepartmentUniversity of Bari Aldo MoroBariItaly
  3. 3.CREA Research Centre for Vegetable and Ornamental CropsPontecagnanoItaly

Personalised recommendations