Reilly-Type Inequalities for Paneitz and Steklov Eigenvalues

  • Julien RothEmail author


We prove Reilly-type upper bounds for different types of eigenvalue problems on submanifolds of Euclidean spaces with density. This includes the eigenvalues of Paneitz-like operators as well as three types of generalized Steklov problems. In the case without density, the equality cases are discussed and we prove some stability results for hypersurfaces which derive from a general pinching result about the moment of inertia.


Paneitz operator Steklov problem Eigenvalues Hypersurfaces Pinching 

Mathematics Subject Classification (2010)

35P15 53C20 53C24 53C42 58C40 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    Alencar, H., Carmo, M. P., Rosenberg, H.: On the first eigenvalue of Linearized operator of the r-th mean curvature of a hypersurface. Ann. Glob. Anal. Geom. 11, 387–395 (1993)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Aubry, E., Grosjean, J.F.: Spectrum of hypersurfaces with small extrinsic radius or large λ 1 in Euclidean spaces. J. Funct. Anal. 271(5), 1213–1242 (2016)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Aubry, E., Grosjean, J.F., Roth, J.: Hypersurfaces with small extrinsic radius or large λ 1, in Euclidean spaces. arXiv:1009.2010
  4. 4.
    Alias, L.J., Malacarne, J.M.: On the first eigenvalue of the linearized operator of the higher order mean curvature for closed hypersurfaces in space forms. Illinois J. Math. 48(1), 219–240 (2004)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Auchmuty, G.: Steklov Eigenproblems and the representation of solutions of elliptic boundary value problems. Numer. Funct. Anal. Optim. 25(3–4), 321–348 (2004)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Bakry, D., Émery, M.: Diffusions hypercontractives. In: Séminaire de probabilités, XIX, 1983/84, volume 1123 of Lecture Notes in Math, pp 177–206. Springer, Berlin (1985)Google Scholar
  7. 7.
    Barbosa, J.L.M., Colares, A.G.: Stability of hypersurfaces with constant r-mean curvature. Ann. Global Anal. Geom. 15, 277–297 (1997)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Batista, M., Santos, J.I.: The first Stekloff eigenvalue in weighted Riemannian manifolds. arXiv:1504.02630 (2015)
  9. 9.
    Batista, M., Cavalcante, M.P., Pyo, J.: Some isomperimetric inequalities and eigenvalue estimates in weighted manifolds. J. Math. Anal. Appl. 419(1), 617–626 (2014)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Branson, T.: Differential operators canonically associated to a conformal structure. Math. Scand. 57, 293–345 (1985)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Brendle, S.: Embedded self-similar shrinkers of genus 0. Ann. Math. 183, 715–728 (2016)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Buoso, D., Provenzano, L.: On the Eigenvalues of a Biharmonic Steklov Problem: Integral Methods in Science and Engineering: Theoretical and Computational Advances. Birkhauser, Cambridge (2015)zbMATHGoogle Scholar
  13. 13.
    Caubet, F., Kateb D., Le Louër, F.: Shape sensitivity analysis for elastic structures with generalized impedance boundary conditions of the Wentzell type—application to compliance minimization, Hal:01525249Google Scholar
  14. 14.
    Chen, D., Li, H.: The sharp estimates for the first eigenvalue of Paneitz operator on 4-dimensional submanifolds. arXiv:1010.3102
  15. 15.
    Colbois, B., Grosjean, J.F.: A pinching theorem for the first eigenvalue of the Laplacian on hypersurfaces of Euclidean spaces. Comment. Math. Helv. 82, 175–195 (2007)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Dambrine, M., Kateb, D., Lamboley, J.: An extremal eigenvalue problem for the Wentzell-Laplace operator. Ann. I. H. Poincaré 33(2), 409–450 (2016)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Djadli, Z., Hebey, E., Ledoux, M.: Paneitz-type operators and applications. Duke Math. J. 104(1), 129–169 (2000)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Domingo-Juan, M.C., Miquel, V.: Reilly’s type inequality for the Laplacian associated to a density related with shrinkers for MCF. arXiv:1503.01332
  19. 19.
    El Soufi, A., Ilias, S.: Une inégalité de type “Reilly” pour les sous-variétés de l’espace hyperbolique. Comment. Math. Helv. 67(2), 167–181 (1992)MathSciNetzbMATHGoogle Scholar
  20. 20.
    El Soufi, A., Harrell, E.M. II, Ilias, S.: Universal inequalities for the eigenvalues of Laplace and Schrödinger operators on submanifolds. Trans. Amer. Math. Soc. 361 (5), 2337–2350 (2009)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Grosjean, J. F.: Upper bounds for the first eigenvalue of the Laplacian on compact manifolds. Pac. J. Math. 206(1), 93–111 (2002)zbMATHGoogle Scholar
  22. 22.
    Guan, P. F., Shen, S.: A rigidity theorem for hypersurfaces in higher dimensional space forms. In: Analysis, Complex Geometry, and Mathematical Physics: in Honor of Duong H. Phong, 61–65, Contemp. Math., vol. 644. American Mathematical Society, Providence (2015)Google Scholar
  23. 23.
    Hsiung, C. C.: Some integral formulae for closed hypersurfaces. Math. Scand. 2, 286–294 (1954)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Huisken, G.: Asymptotic behavior for singularities of the mean curvature flow. J. Differ. Geom. 31, 285–299 (1990)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Hu, Y., Xu, H., Zhao, E.: First eigenvalue pinching for Euclidean hypersurfaces via k-th mean curvatures. Ann. Glob. Anal. Geom. 1–13 (2015)Google Scholar
  26. 26.
    Ilias, S., Makhoul, O.: A Reilly inequality for the first Steklov eigenvalue. Differ. Geom. Appl. 29(5), 699–708 (2011)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Lichnerowicz, A.: Variétés riemanniennes à tenseurr C non négatif. C.R. Acad. Sc. Paris Ser. A 271, A650–A653 (1970)Google Scholar
  28. 28.
    Paneitz, S.: A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds preprint (1983)Google Scholar
  29. 29.
    Paneitz, S.: A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds. SIGMA 4, article 036 (2008)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Reilly, R. C.: On the first eigenvalue of the Laplacian for compact submanifolds of Euclidean space. Comment. Math. Helv. 52, 525–533 (1977)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Roth, J.: Extrinsic radius pinching for hypersurfaces of space forms. Differ. Geom. Appl. 25(5), 485–499 (2007)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Roth, J.: Extrinsic radius pinching in space forms with nonnegative sectional curvature. Math. Z. 258(1), 227–240 (2008)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Roth, J.: Upper bounds for the first eigenvalue of the Laplacian in terms of anisiotropic mean curvatures. Results Math. 64(3–4), 383–403 (2013)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Roth, J.: General Reilly-type inequalities for submanifolds of weighted Euclidean spaces. Colloq. Math. 144(1), 127–136 (2016)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Roth, J., Scheuer, J.: Pinching of the first eigenvalue for second order operators on hypersurfaces of the Euclidean space. Ann. Glob. Anal. Geom. 51(3), 287–304 (2017)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Steklov, W.: Sur les problèmes fondamentaux de la physique mathémnatique (suite et fin). Ann. Sci. École Norm. Sup. (3) 319, 455–490 (1902)Google Scholar
  37. 37.
    Wang, Q., Xia, C.: Sharp bounds for the first non-zero Stekloff eigenvalues. J. Funct. Anal. 257, 2635–2644 (2009)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Wei, G., Wylie, W.: Comparison geometry for the Bakry-Émery Ricci curvature. J. Differ. Geom. 83, 377–405 (2009)zbMATHGoogle Scholar
  39. 39.
    Xia, C., Wang, Q.: Eigenvalues of the Wentzell-Laplace operator and of the fourth order Steklov problems. Journal Differential Equations, 264(10), 6486–6506. arXiv:1506.03780
  40. 40.
    Yang, P., Xu, X.: Positivity of Paneitz operators. Discrete Cont. Dyn. Syst. 7(2), 329–342 (2001)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Laboratoire d’Analyse et de Mathématiques AppliquéesUPEM-UPEC, CNRSMarne-la-ValléeFrance

Personalised recommendations