Advertisement

Dirichlet Heat Kernel for the Laplacian in a Ball

  • Jacek Małecki
  • Grzegorz SerafinEmail author
Open Access
Article
  • 50 Downloads

Abstract

We provide sharp two-sided estimates on the Dirichlet heat kernel k1(t, x, y) for the Laplacian in a ball. The result accurately describes the exponential behaviour of the kernel for small times and significantly improves the qualitatively sharp results known so far. As a consequence we obtain the full description of the kernel k1(t, x, y) in terms of its global two-sided sharp estimates. Such precise estimates were possible to obtain due to the enrichment of analytical methods with probabilistic tools.

Keywords

Laplacian Ball Heat kernel Estimates Exit time 

Mathematics Subject Classification (2010)

35K08 60J65 

References

  1. 1.
    Cheeger, J., Yau, S.T.: A lower bound for the heat kernel. Comm. Pure Appl. Math. 34(4), 465–480 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Collet, P., Martínez, S., San Martín, J.: Asymptotic behaviour of a Brownian motion on exterior domains. Probab. Theory Related Fields 116(3), 303–316 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Davies, E.B.: The equivalence of certain heat kernel and Green function bounds. J. Funct. Anal. 71, 88–103 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Davies, E.B., Simon, B.: Ultracontractivity and heat kernels for Schrödinger operators and Dirichlet Laplacians. J. Funct. Anal. 59, 335–395 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Feller, W.: An Introduction to Probability Theory and Its Applications, Second edition, vol. II. Wiley, New York (1971)zbMATHGoogle Scholar
  6. 6.
    Grigor’yan, A., Saloff-Coste, L.: Dirichlet heat kernel in the exterior of a compact set. Comm. Pure Appl. Math. 55(1), 93–133 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Gyrya, P., Saloff-Coste, L.: Neumann and Dirichlet heat kernels in inner uniform domains. Astérisque (336):viii+ 144 (2011)Google Scholar
  8. 8.
    Hsu, P.: Brownian exit distribution of a ball. In: Seminar on Stochastic Processes, 1985 (Gainesville, Fla., 1985), Volume 12 of Progr. Probab. Statist., pp 108–116. Birkhäuser Boston, Boston (1986)Google Scholar
  9. 9.
    Kac, M.: On some connections between probability theory and differential and integral equations. In: Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950, pp 189–215. University of California Press, Berkeley and Los Angeles (1951)Google Scholar
  10. 10.
    Kac, M.: Can one hear the shape of a drum?. Amer. Math. Monthly 73(4, part II), 1–23 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kim, P., Song, R.: Two-sided estimates on the density of Brownian motion with singular drift. Illinois J. Math. 50(1-4), 635–688 (2006)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Małecki, J., Serafin, G., Zorawik, T.: Fourier-Bessel heat kernel estimates. J. Math. Anal. Appl. 439(1), 91–101 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Pyć, A., Serafin, G., Żak, T.: Supremum distribution of Bessel process of drifting Brownian motion. Probab. Math Statist. 35(2), 201–222 (2015)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Serafin, G.: Exit times densities of Bessel process. Proceedings of the American Mathematical Society, in pressGoogle Scholar
  15. 15.
    van den Berg, M.: Gaussian bounds for the Dirichlet heat kernel. J. Funct. Anal. 88(2), 267–278 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Varadhan, S.R.S.: Diffusion processes in a small time interval. Comm. Pure Appl. Math. 20, 659–685 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Zhang, Q.S.: The boundary behavior of heat kernels of Dirichlet Laplacians. J. Diff. Eq. 182, 416–430 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Zhang, Q.S.: The global behavior of heat kernels in exterior domains. J. Funct. Anal. 200(1), 160–176 (2003)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Faculty of Pure and Applied MathematicsWrocław University of Science and TechnologyWrocławPoland

Personalised recommendations