Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Harmonic Measures, Green Potentials and Semigroups of Holomorphic Functions

  • 67 Accesses


Let K be a compact subset of the unit disk \(\mathbb {D}\). We examine the asymptotic behavior of its trajectory under a semigroup of holomorphic self-maps (ϕt)t≥ 0 of \(\mathbb {D}\). More specifically, we obtain results concerning its geometric characteristics such as hyperbolic area, hyperbolic diameter, as well as potential theoretic quantities. Those are the harmonic measure of ϕt(K), its equilibrium measure and its Green equilibrium potential.

This is a preview of subscription content, log in to check access.


  1. 1.

    Abate, M.: Iteration theory of holomorphic maps on taut manifolds. Mediterranean Press (1989)

  2. 2.

    Armitage, D.H., Gardiner, S.J.: Classical potential theory. Springer Science & Business Media, Berlin (2001)

  3. 3.

    Arosio, L., Bracci, F.: Canonical models for holomorphic iteration. Trans. Amer. Math Soc. 368(5), 3305–3339 (2016)

  4. 4.

    Beardon, A.F., Minda, D.: The hyperbolic metric and geometric function theory. In: Quasiconformal mappings and their applications, pp. 9–56. Narosa (2007)

  5. 5.

    Berkson, E., Porta, H.: Semigroups of analytic functions and composition operators. Michigan Math. J. 25(1), 101–115 (1978)

  6. 6.

    Betsakos, D.: . Geometric description of the classification of holomorphic semigroups. Proc. Amer. Math. Soc. 144(4), 1595–1604 (2016)

  7. 7.

    Betsakos, D.: On the existence of strips inside domains convex in one direction. J. Anal. Math. 134(1), 107–126 (2018)

  8. 8.

    Betsakos, D., Kelgiannis, G., Kourou, M., Pouliasis, S.: Semigroups of holomorphic functions and condenser capacity. Preprint (2018)

  9. 9.

    Bracci, F., Contreras, M.D., Díaz-Madrigal, S.: On the Königs function of semigroups of holomorphic self-maps of the unit disc. arXiv:1804.10465 (2018)

  10. 10.

    Contreras, M.D., Díaz-Madrigal, S.: Analytic flows on the unit disk: angular derivatives and boundary fixed points. Pacific J. Math. 222(2), 253–286 (2005)

  11. 11.

    Elin, M., Jacobzon, F., Levenshtein, M., Shoikhet, D.: The Schwarz lemma: rigidity and dynamics. In: Harmonic and Complex Analysis and its Applications, Trends Math., pp. 135–230. Birkhäuser/Springer, Cham (2014)

  12. 12.

    Elin, M., Shoikhet, D.: Linearization models for complex dynamical systems. Birkhäuser Verlag (2010)

  13. 13.

    Garnett, J.B., Marshall, D.E.: Harmonic measure, volume 2 of New Mathematical Monographs. Cambridge University Press, Cambridge (2008)

  14. 14.

    Gehring, F.W.: Inequalities for condensers, hyperbolic capacity, and extremal lengths. Michigan Math. J. 18, 1–20 (1971)

  15. 15.

    Goryainov, V.: Semigroups of analytic functions in analysis and applications. Russ. Math. Surv. 67(6), 975 (2012)

  16. 16.

    Helms, L.L.: Potential theory. Universitext, 2nd edn. Springer, London (2014)

  17. 17.

    Jacobzon, F., Levenshtein, M., Reich, S.: Convergence characteristics of one-parameter continuous semigroups. Anal. Math. Phys. 1(4), 311–335 (2011)

  18. 18.

    Landkof, N.S.: Foundations of modern potential theory. Springer (1972)

  19. 19.

    Minda, D.: A reflection principle for the hyperbolic metric and applications to geometric function theory. Complex Variables Theory Appl. 8(1-2), 129–144 (1987)

  20. 20.

    Pommerenke, C.H.: On hyperbolic capacity and hyperbolic length. Michigan Math. J. 10, 53–63 (1963)

  21. 21.

    Pommerenke, C.H.: Boundary behaviour of conformal maps. Springer Science & Business Media, Berlin (1992)

  22. 22.

    Ransford, T.: Potential theory in the complex plane. Cambridge University Press (1995)

  23. 23.

    Shoikhet, D.: Semigroups in geometrical function theory. Kluwer Academic Publishers, Norwell (2001)

Download references


I would like to thank Prof. D. Betsakos, my thesis advisor, for his advice and assistance during the preparation of this work.

Author information

Correspondence to Maria Kourou.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kourou, M. Harmonic Measures, Green Potentials and Semigroups of Holomorphic Functions. Potential Anal 52, 301–319 (2020). https://doi.org/10.1007/s11118-018-9748-9

Download citation


  • Semigroup of holomorphic functions
  • Harmonic measure
  • Green potential
  • Koenigs function
  • Equilibrium measure
  • Hyperbolic metric

Mathematics Subject Classification (2010)

  • Primary 31A15, 30D05, 30C85
  • Secondary 30C20, 47D06