Potential Analysis

, Volume 51, Issue 4, pp 579–601 | Cite as

Commutators of Singular Integrals with Kernels Satisfying Generalized Hörmander Conditions and Extrapolation Results to the Variable Exponent Spaces

  • Luciana MelchioriEmail author
  • Gladis Pradolini


We obtain boundedness results for the higher order commutators of singular integral operators between weighted Lebesgue spaces, including Lp-BMO and Lp-Lipschitz estimates. The kernels of such operators satisfy certain regularity condition, and the symbol of the commutator belongs to a Lipschitz class. We also deal with commutators of singular integral operators with less regular kernels satisfying a Hörmander’s type inequality. Moreover, we give a characterization result involving symbols of the commutators and continuity results for extreme values of p. Finally, by extrapolation techniques, we derive different results in the variable exponent context.


Commutators Variable Lebesgue spaces Extrapolation 

Mathematics Subject Classification (2010)



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alvarez, J., Pérez, C.: Estimates with \(A_{\infty }\) weights for various singular integral operators. Boll. Un. Mat. Ital. A (7) 8(1), 123–133 (1994)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Bernardis, A., Dalmasso, E., Pradolini, G.: Generalized maximal functions and related operators on weighted Musielak-Orlicz spaces. Ann. Acad. Sci. Fenn. Math. 39(1), 23–50 (2014)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bernardis, A.L., Lorente, M., Martín Reyes, F.J., Martínez, M.T., de la Torre, A., Torrea, J.L.: Differential transforms in weighted spaces. J. Fourier Anal. Appl. 12(1), 83–103 (2006)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cabral, A., Pradolini, G., Ramos, W.: Extrapolation and weighted norm inequalities between Lebesgue and Lipschitz spaces in the variable exponent context. J. Math. Anal. Appl. 436(1), 620–636 (2016)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Calderón, A.P.: Commutators of singular integral operators. Proc. Nat. Acad. Sci. U.S.A. 53, 1092–1099 (1965)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Christ, M.: Lectures on singular integral operators, volume 77 of Reg. In: Conferences Series in Math. Amer. Math. Soc., Providence. RI (1990)Google Scholar
  7. 7.
    Coifman, R., Meyer, Y.: Au Delà Des Opérateurs Pseudo-Différentiels, volume 57 of Astérisque Société Mathématique de France, Paris. With an English summary (1978)Google Scholar
  8. 8.
    Coifman, R., Meyer, Y.: Commutateurs d’intégrales singulières et opérateurs multilinéaires. Ann. Inst. Fourier (Grenoble) 28(3), xi, 177–202 (1978)CrossRefGoogle Scholar
  9. 9.
    Coifman, R.R.: Distribution function inequalities for singular integrals. Proc. Nat. Acad. Sci. USA 69(10), 2838–2839 (1972)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Coifman, R.R., Fefferman, C.: Weighted norm inequalities for maximal functions and singular integrals. Studia Math. 51, 241–250 (1974)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Cruz-Uribe, D., Diening, L., Hästö, P.: The maximal operator on weighted variable Lebesgue spaces. Fract. Calc. Appl. Anal. 14(3), 361–374 (2011)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Cruz-Uribe, D., Fiorenza, A. Applied and Numerical Harmonic Analysis: variable Lebesgue spaces. Foundations and harmonic analysis. Springer, Heidelberg (2013)Google Scholar
  13. 13.
    Cruz-Uribe, D., Martell, J., Pérez, C.: Sharp two-weight inequalities for singular integrals, with applications to the Hilbert transform and the Sarason conjecture. Adv. Math. 216(2), 647–676 (2007)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Cruz-Uribe, D., Wang, L.-A.D.: Extrapolation and weighted norm inequalities in the variable Lebesgue spaces. Trans. Amer. Math. Soc. 369(2), 1205–1235 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents, volume 2017 of Lecture Notes in Math. Springer, Heidelberg (2011)zbMATHGoogle Scholar
  16. 16.
    García-Cuerva, J., de Francia, J.L.R.: Weighted norm inequalities and related topics, volume 116 of North-Holland Mathematics Studies. North-Holland Publishing Co., Amsterdam. Notas de Matemática [Mathematical Notes], 104 (1985)Google Scholar
  17. 17.
    García-Cuerva, J., Harboure, E., Segovia, C., Torrea, J.L.: Weighted norm inequalities for commutators of strongly singular integrals. Indiana Univ. Math. J. 40 (4), 1397–1420 (1991)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Guo, W., He, J., Wu, H., Yang, D.: Boundedness and compactness of commutators associated with lipschitz functions. arXiv:1801.06064
  19. 19.
    Harboure, E., Salinas, O., Viviani, B.: Orlicz boundedness for certain classical operators. Colloq. Math. 91(2), 263–282 (2002)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Harboure, E., Segovia, C., Torrea, J.L.: Boundedness of commutators of fractional and singular integrals for the extreme values of p. Illinois J. Math. 41(4), 676–700 (1997)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Holmes, I., Wick, B.: Two weight inequalities for iterated commutators with calderón-zygmund operators. arXiv:1509.03769
  22. 22.
    Jones, R.L., Rosenblatt, J.: Differential and ergodic transforms. Math. Ann. 323(3), 525–546 (2002)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Kováčik, O., Rákosník, J.: On spaces L p(x) and W k,p(x). Czechoslovak Math. J. 41(4), 592–618 (1991)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Kurtz, D.S., Wheeden, R.L.: Results on weighted norm inequalities for multipliers. Trans. Amer. Math Soc. 255, 343–362 (1979)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Lerner, A., Ombrosy, S., Rivera-Ríos, I.: Commutators of singular integrals revisited. arXiv:1709.04724
  26. 26.
    Lorente, M., Martell, J.M., Riveros, M.S., de la Torre, A.: Generalized Hörmander’s conditions, commutators and weights. J. Math. Anal. Appl. 342(2), 1399–1425 (2008)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Lorente, M., Riveros, M.S., De la Torre, A.: Weighted estimates for singular integral operators satisfying Hörmander’s conditions of Young type. J. Fourier Anal. Appl. 11(5), 497–509 (2005)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Meng, Y., Yang, D.: Boundedness of commutators with Lipschitz functions in non-homogeneous spaces Taiwanese. J. Math. 10(6), 1443–1464 (2006)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Muckenhoupt, B., Wheeden, R.: Weighted norm inequalities for fractional integrals. Trans. Amer. Math Soc. 192, 261–274 (1974)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Muckenhoupt, B., Wheeden, R.L.: Weighted bounded mean oscillation and the Hilbert transform. Studia Math. 54(3), 221–237 (1975/76)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Musielak, J.: Orlicz spaces and modular spaces, volume 1034 of Lecture Notes in Math. Springer, Berlin (1983)Google Scholar
  32. 32.
    Pérez, C.: Weighted norm inequalities for singular integral operators. J. Lond. Math. Soc. (2) 49(2), 296–308 (1994)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Pérez, C.: Endpoint estimates for commutators of singular integral operators. J. Funct. Anal. 128(1), 163–185 (1995)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Pérez, C.: Sharp estimates for commutators of singular integrals via iterations of the Hardy-Littlewood maximal function. J. Fourier Anal. Appl. 3(6), 743–756 (1997)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Pradolini, G.G., Ramos, W.A.: Characterization of Lipschitz functions via the commutators of singular and fractional integral operators in variable Lebesgue spaces. Potential Anal. 46(3), 499–525 (2017)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Ramseyer, M., Salinas, O., Viviani, B.: Fractional integrals and Riesz transforms acting on certain Lipschitz spaces. Michigan Math. J. 65(1), 35–56 (2016)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Rubio de Francia, J.L., Ruiz, F.J., Torrea, J.L.: Calderón-Zygmund theory for operator-valued kernels. Adv. in Math. 62(1), 7–48 (1986)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Watson, D.K.: Weighted estimates for singular integrals via Fourier transform estimates. Duke Math. J. 60(2), 389–399 (1990)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Facultad de Ingeniería QuímicaCONICET-UNLSanta FeArgentina

Personalised recommendations