Advertisement

On the Rate of Almost Everywhere Convergence of Combinations and Multivariate Averages

  • Jiecheng Chen
  • Dashan Fan
  • Fayou Zhao
Article
  • 16 Downloads

Abstract

The main purpose of this paper is to establish results concerning the rate of almost everywhere convergence of the combinations and multivariate averages on Sobolev type spaces on the Euclidean space \(\mathbb {R}^{n}\). The saturation of convergence is also obtained. As an application, the corresponding results can be extended to the n-torus \(\mathbb {T}^{n}\), by using some transference theorems.

Keywords

Combination and multivariate average Multipliers Almost everywhere Saturation Fourier series 

Mathematics Subject Classification (2010)

41A25 41A63 42B15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The research was supported by National Natural Science Foundation of China (Grant Nos. 11671363, 11601456) and China Scholarship Council (Grant No. 201406895019).

References

  1. 1.
    Belinsky, E., Dai, F., Ditzian, Z.: Multivariate approximating average. J. Approx. Theory 125, 85–105 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bourgain, J.: Averages in the plane over convex curves and maximal operators. J. Anal. Math. 47, 69–85 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Carleson, L.: On convergence and growth of partial sums of Fourier series. Acta Math. 157, 116–135 (1966)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Cowling, M., Mauceri, G.: On maximal functions. Rend. Sem. Mat. Fis. Milano 49, 79–87 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Dai, F., Ditzian, Z.: Combinations of multivariate averages. J. Approx. Theory 131(2), 268–283 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Fan, D., Wu, Z.: Transference of maximal multipliers on Hardy spaces. Proc. Amer. Math. Soc. 123, 3169–3174 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Fan, D., Zhao, F.: Block-sobolev spaces and the rate of almost everywhere convergence of Bochner-Riesz means. Constr. Approx. 45, 391–405 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Fan, D., Zhao, F.: Almost everywhere convergence of Bochner-Riesz means on Hardy-Sobolev type spaces, submittedGoogle Scholar
  9. 9.
    Fan, D., Zhao, F.: Approximation properties of combination of multivariate averages on Hardy spaces. J. Approx. Theory 223, 77–95 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Grafakos, L.: Classical Fourier Analysis, 2nd edition graduate texts in math, vol. 249. Springer, New York (2008)Google Scholar
  11. 11.
    Grafakos, L.: Modern Fourier Analysis, 2nd edition graduate texts in math, vol. 250. Springer, New York (2008)Google Scholar
  12. 12.
    Greenleaf, A.: Principal curvature and harmonic analysis. Indiana Math. J. 30, 519–537 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kenig, C., Tomas, P.: Maximal operators defined by Fourier multipliers. Studia Math. 68, 79–83 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Lee, S., Seeger, A.: On radial Fourier multipliers and almost everywhere convergence. J. Lond. Math. Soc. 91(2), 105–126 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Phong, D.H., Stein, E.M.: Hilbert integrals, singular integrals, and Radon transforms I. Acta Math. 157, 99–157 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Stein, E.M.: Maximal functions: spherical means. Proc. Nat. Acad. Sci. U.S.A. 73, 2174–2175 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton (1993)zbMATHGoogle Scholar
  18. 18.
    Stein, E.M., Taibleson, M.H., Weiss, G.: Weak type estimates for maximal operators on certain h p classes. Proceedings of the Seminar on Harmonic Analysis (Pisa Rend. Circ. Mat. Palermo, 2 (1981), suppl. 1, 81–97 (1980)Google Scholar
  19. 19.
    Stein, E.M., Wainger, S.: Problems in harmonic analysis related to curvature. Bull. Am. Math. Soc. 84, 1239–1295 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton (1971)Google Scholar
  21. 21.
    Stein, E.M., Weiss, N.: On the convergence of Poisson integrals. Trans. Amer. Math. Soc. 140, 35–54 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Strichartz, R.: H p Sobolev spaces. Colloq. Math. LX/LXI, 129–139 (1990)CrossRefzbMATHGoogle Scholar
  23. 23.
    Taibleson, M.H., Weiss, G.: The molecular characterization of certain Hardy spaces, astérisque, 77 société Math. de France, Paris, 67–149 (1980)Google Scholar
  24. 24.
    Tao, T.: On the maximal Bochner-Riesz conjecture in the plane for p < 2. Trans. Amer. Math. Soc. 354, 1947–1959 (2002)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of MathematicsZhejiang Normal UniversityJinhuaPeople’s Republic of China
  2. 2.Department of Mathematical SciencesUniversity of Wisconsin-MilwaukeeMilwaukeeUSA
  3. 3.Department of MathematicsShanghai UniversityShanghaiPeople’s Republic of China

Personalised recommendations