Advertisement

Potential Analysis

, Volume 50, Issue 4, pp 541–564 | Cite as

Upper Escape Rate for Weighted Graphs via Metric Graphs

  • Xueping HuangEmail author
  • Liang Niu
Article
  • 36 Downloads

Abstract

The upper escape rate for a Markov process is a natural partial generalization of the celebrated Khintchine’s law of the iterated logarithm. In this article, we present a new proof of the sharp volume growth criterion for upper escape rate of continuous time random walks on weighted graphs in Huang and Shiozawa (Stoch. Process Appl. 124(1), 317–347 2014). Our proof is based on comparison with a corresponding modified metric graph, and this technique allows us to remove the restriction on vertex weight in Huang and Shiozawa (Stoch. Process Appl. 124(1), 317–347 2014) as well.

Keywords

Escape rate Upper rate function Continuous time random walks Markov chains Weighted graphs Metric graphs 

Mathematics Subject Classification (2010)

Primary 60J27; Secondary 05C81 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors gratefully acknowledge financial support from National Natural Science Foundation of China(Grant No. 11601238), and The Startup Foundation for Introducing Talent of Nanjing University of Information Science and Technology(Grant No. 2015r053). X. H. was also partially supported by the SMART project of GSIS, Tohoku University.

We thank the anonymous referee for carefully reading the article and helping us improve the presentation.

References

  1. 1.
    Azencott, R.: Behavior of diffusion semi-groups at infinity. Bull. Soc. Math. (France) 102, 193–240 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext. Springer, New York (2011)zbMATHGoogle Scholar
  3. 3.
    Burago, D., Burago, Y., Ivanov, S.: A Course in Metric Geometry Graduate Studies in Mathematics, vol. 33. American Mathematical Society, Providence (2001)zbMATHGoogle Scholar
  4. 4.
    Chen, Z. -Q., Fukushima, M.: Symmetric Markov Processes, Time Change, and Boundary Theory, London Mathematical Society Monographs Series, vol. 35. Princeton University Press, Princeton (2012)Google Scholar
  5. 5.
    Chung, K. L.: Markov Chains with Stationary Transition Probabilities, 2nd edn. Die Grundlehren der mathematischen Wissenschaften Band, vol. 104. Springer-Verlag New York, Inc., New York (1967)Google Scholar
  6. 6.
    Conway, J. B.: A Course in Functional Analysis, 2nd edn. Graduate Texts in Mathematics, vol. 96. Springer-Verlag, New York (1990)Google Scholar
  7. 7.
    Deuschel, J. -D., Stroock, D. W.: Large Deviations Pure and Applied Mathematics, vol. 137. Academic Press Inc, Boston (1989)Google Scholar
  8. 8.
    Folz, M.: Gaussian upper bounds for heat kernels of continuous time simple random walks. Elec. J. Prob. 16, 1693–1722 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Folz, M.: Volume growth and stochastic completeness of graphs. Trans. Amer. Math Soc. 366, 2089–2119 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Frank, R. L., Lenz, D., Wingert, D.: Intrinsic metrics for non-local symmetric dirichlet forms and applications to spectral theory. J. Funct. Anal. 266, 4765–4808 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Freedman, D.: Markov Chains. Holden-Day, San Francisco (1971)zbMATHGoogle Scholar
  12. 12.
    Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet Forms and Symmetric Markov Processes, Extended ed., de Gruyter Studies in Mathematics, vol. 19. Walter de Gruyter & Co., Berlin (2011)Google Scholar
  13. 13.
    Gray, A., Pinsky, M. A.: The mean exit time from a small geodesic ball in a Riemannian manifold. Bull. Sci. Math. (2) 107(4), 345–370 (1983)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Grigor’yan, A.: On stochastically complete manifolds. DAN SSSR 290, 534–537 (1986). in Russian. Engl. transl.: Soviet Math. Dokl., 34 (1987) no.2, 310–313MathSciNetGoogle Scholar
  15. 15.
    Grigor’yan, A.: Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds. Bull. Amer. Math. Soc. 36, 135–249 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Grigor’yan, A.: Escape rate of Brownian motion on Riemannian manifolds. Appl. Anal. 71(1-4), 63–89 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Grigor’yan, A., Hsu, E. P.: Volume Growth and Escape Rate of Brownian Motion on a Cartan-Hadamard Manifold, Sobolev Spaces in Mathematics. II Int. Math. Ser. (N. Y.), vol. 9, pp 209–225. Springer, New York (2009)zbMATHGoogle Scholar
  18. 18.
    Grigor’yan, A., Hu, J.: Off-diagonal upper estimates for the heat kernel of the Dirichlet forms on metric spaces. Invent. Math. 174(1), 81–126 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Grigor’yan, A., Huang, X., Masamune, J.: On stochastic completeness of jump processes. Math. Z. 271(3-4), 1211–1239 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Grigor’yan, A., Kelbert, M.: Range of fluctuation of Brownian motion on a complete Riemannian manifold. Ann. Probab. 26(1), 78–111 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Haeseler, S.: Analysis of Dirichlet Forms on Graphs. Friedrich-Schiller-Universitaet Jena, Thesis (Ph.D.) (2013)Google Scholar
  22. 22.
    Hsu, E. P., Qin, G.: Volume growth and escape rate of Brownian motion on a complete Riemannian manifold. Ann. Probab. 38(4), 1570–1582 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Huang, X.: Escape rate of Markov chains on infinite graphs. J. Theoret. Probab., to appear (2011)Google Scholar
  24. 24.
    Huang, X.: On uniqueness class for a heat equation on graphs. J. Math. Anal. Appl. 393(2), 377–388 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Huang, X.: A note on the volume growth criterion for stochastic completeness of weighted graphs. Potential Anal. 40, 117–142 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Huang, X., Keller, M., Masamune, J., Wojciechowski, R. K.: A note on self-adjoint extensions of the Laplacian on weighted graphs. J. Funct. Anal. 8, 1556–1578 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Huang, X., Shiozawa, Y.: Upper escape rate of Markov chains on weighted graphs. Stoch. Process. Appl. 124(1), 317–347 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Jain, N., Krylov, N.: Large deviations for occupation times of Markov processes with L 2 semigroups. Ann. Probab. 36(5), 1611–1641 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Keller, M., Lenz, D.: Dirichlet forms and stochastic completeness of graphs and subgraphs. J. Reine Angew. Math. 666, 189–223 (2012)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Kumagai, T., Nakamura, C.: Laws of the iterated logarithm for random walks on random conductance models, Stochastic analysis on large scale interacting systems. RIMS Kôkyûroku Bessatsu, B59, Res. Inst. Math. Sci. (RIMS), Kyoto, pp. 141–156 (2016)Google Scholar
  31. 31.
    Lyons, T., Zheng, W. A.: A crossing estimate for the canonical process on a Dirichlet space and a tightness result, Astérisque (1988), no. 157-158, 249–271 Colloque Paul Lévy sur les Processus Stochastiques (Palaiseau) (1987)Google Scholar
  32. 32.
    Masamune, J., Uemura, T.: Conservation property of symmetric jump processes. Ann. Inst. Henri. Poincaré, Probab. Statist. 47(3), 650–662 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Masamune, J., Uemura, T., Wang, J.: On the conservativeness and the recurrence of symmetric jump-diffusions. J. Funct. Anal. 263(12), 3984–4008 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Nakamura, C.: Rate functions for random walks on random conductance models and related topics. Kodai Math. J. 40(2), 289–321 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Norris, J.R.: Markov Chains, Cambridge Series in Statistical and Probabilistic Mathematics, vol. 2. Cambridge University Press, Cambridge (1998). Reprint of 1997 originalGoogle Scholar
  36. 36.
    Ouyang, S. -X.: Volume growth and escape rate of symmetric diffusion processes. Stochastics 88(3), 353–372 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Shiozawa, Y.: Escape rate of symmetric jump-diffusion processes. Trans. Amer. Math. Soc. 368(11), 7645–7680 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Shiozawa, Y., Wang, J: Rate functions for symmetric Markov processes via heat kernel. Potential Anal. 46(1), 23–53 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Sturm, K. T.: Analysis on local Dirichlet spaces. I. Recurrence, conservativeness and L p-Liouville properties. J. Reine Angew. Math. 456, 173–196 (1994)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Takeda, T.: On a martingale method for symmetric diffusion processes and its applications. Osaka J. Math. 26(3), 605–623 (1989)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsNanjing University of Information Science and TechnologyNanjingChina

Personalised recommendations