Advertisement

Improved Singular Moser–Trudinger Inequalities and Their Extremal Functions

  • Van Hoang Nguyen
Article
  • 7 Downloads

Abstract

In this paper, we prove several improvements for the sharp singular Moser–Trudinger inequality. We first establish an improved singular Moser–Trudinger inequality in the spirit of Tintarev (J. Funct. Anal. 266, 55–66, 2014) and prove the existence of extremal functions for this improved singular Moser–Trudinger inequality. Our proof is based on the blow-up analysis method. Due to appearance of the singularity of weights, our proof is more complicated and difficult in dealing with analyzing the asymptotic behavior of the sequence of maximizers in the subcritical case near the blow-up point when comparing with the previous works (see, e.g., Nguyen (Ann. Global Anal. Geom. 54(2), 237–256, 2018), Yang (J. Funct. Anal. 239(1), 100–126, 2006)). To overcome these difficulties, we shall prove a classification result for a singular quasi-linear Liouville equation which maybe is of independent interest. Finally, we derive another improvement of the singular Moser–Trudinger inequality in the sprit of Adimurthi and Druet (Comm. Partial Differential Equations 29, 295–322, 2004). Our results extend many well-known Moser–Trudinger type inequalities to more general setting (e.g., singular weights, higher dimension, any domain, etc).

Keywords

Singular Moser–Trudinger inequality Improvement Extremal functions Blow-up analysis Elliptic regularity theory Green function Singular quasi-linear Liouville equation Classification 

Mathematics Subject Classification (2010)

26D10 46E35 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Adams, D.R.: A sharp inequality of J. Moser for higher order derivatives. Ann. Math. 128(2), 385–398 (1988)CrossRefzbMATHGoogle Scholar
  2. 2.
    Adimurthi, Druet, O.: Blow–up analysis in dimension 2 and a sharp form of Trudinger–Moser inequality. Comm. Partial Differential Equations 29, 295–322 (2004)Google Scholar
  3. 3.
    Adimurthi, Sandeep, K.: A singular Moser–Trudinger embedding and its applications. Nonlinear Differ. Equ. Appl. 13, 585–603 (2007)Google Scholar
  4. 4.
    Adimurthi, Yang, Y.: An interpolation of Hardy inequality and Trudinger–Moser inequality in \(\mathbb {R}^{n}\) and its applications. Int. Math. Res. Not. IMRN 13, 2394–2426 (2010)zbMATHGoogle Scholar
  5. 5.
    Alvino, A., Brock, F., Chiacchio, F., Mercaldo, A., Posteraro, M.R.: Some isoperimetric inequalities on r N with respect to weights |x|a. J. Math. Anal. Appl. 451(1), 280–318 (2017)CrossRefzbMATHGoogle Scholar
  6. 6.
    Balogh, J., Manfredi, J., Tyson, J.: Fundamental solution for the Q −Laplacian and sharp Moser–Trudinger inequality in Carnot groups. J. Funct. Anal. 204, 35–49 (2003)CrossRefzbMATHGoogle Scholar
  7. 7.
    Carleson, L., Chang, S.Y.A.: On the existence of an extremal function for an inequality of J. Moser. Bull. Sci. Math. 110, 113–127 (1986)zbMATHGoogle Scholar
  8. 8.
    Černy, R., Cianchi, A., Hencl, S.: Concentration–compactness principles for Moser–Trudinger inequalities: new results and proofs. Ann. Mat. Pura Appl. 192(4), 225–243 (2013)zbMATHGoogle Scholar
  9. 9.
    Chang, S.A., Yang, P.: Conformal deformation of metric on s 2. J. Differential Geom. 27, 259–296 (1988)CrossRefGoogle Scholar
  10. 10.
    Cianchi, A.: MoserTrudinger inequalities without boundary conditions and isoperimetric problems. Indiana Univ. Math. J. 54, 669–705 (2005)CrossRefzbMATHGoogle Scholar
  11. 11.
    Cohn, W.S., Lu, G.: Best constants for Moser–Trudinger inequalities on the Heisenberg group. Indiana Univ. Math. J 50, 1567–1591 (2001)CrossRefzbMATHGoogle Scholar
  12. 12.
    Cohn, W.S., Lu, G.: Sharp constants for Moser–Trudinger inequalities on spheres in complex space c n. Comm. Pure Appl. Math. 57, 1458–1493 (2004)CrossRefzbMATHGoogle Scholar
  13. 13.
    Csató, G., Roy, P.: Extremal functions for the singular Moser–Trudinger inequality in 2 dimensions. Calc. Var. Partial Differential Equations 54, 2341–2366 (2015)CrossRefzbMATHGoogle Scholar
  14. 14.
    Csató, G., Roy, P.: Singular Moser–Trudinger inequality on simply connected domains, Comm. Partial Differential Equations 41, 838–847 (2016)CrossRefzbMATHGoogle Scholar
  15. 15.
    Csató, G., Roy, P., Nguyen, V.H.: Extremals for the singular Moser-Trudinger inequality via n-harmonic transplantation. arXiv:1801.03932v3
  16. 16.
    de Figueiredo, D.G., do Ó, J.M., Ruf, B.: On an inequality by N. Trudinger and J. Moser and related elliptic equations. Comm. Pure Appl. Math. 55, 135–152 (2002)CrossRefzbMATHGoogle Scholar
  17. 17.
    do Ó, J.M., de Souza, M.: A sharp inequality of Trudinger–Moser type and extremal functions in \(H^{1,n}(\mathbb {R}^{n})\). J. Differential Equations 258, 4062–4101 (2015)CrossRefzbMATHGoogle Scholar
  18. 18.
    Druet, O., Hebey, E., Robert, F.: Blow-Up Theory for Elliptic PDEs in Riemannian Geometry, Math Notes, vol. 45. Princeton University press, Princeton (2004)zbMATHGoogle Scholar
  19. 19.
    Esposito, P.: A classification result for the quasi-linear Liouville equation. Ann. Inst. H. Poincaré, Anal. Non Linéaire 35(3), 781–801 (2018)CrossRefzbMATHGoogle Scholar
  20. 20.
    Flucher, M.: Extremal functions for the Trudinger-Moser inequality in 2 dimensions. Comment Math. Helv. 67, 471–497 (1992)CrossRefzbMATHGoogle Scholar
  21. 21.
    Heinonen, J., Kilpelaine, T., Martio, O.: Non-Linear Potential Theory of Degenerate Elliptic Equations. Clarendon Press, Oxford (1993)Google Scholar
  22. 22.
    Iula, S., Mancini, G.: Extremal functions for singular Moser–Trudinger embeddings. Nonlinear Anal. 156, 215–248 (2017)CrossRefzbMATHGoogle Scholar
  23. 23.
    Lam, N., Lu, G.: Sharp Moser–Trudinger inequality on the Heisenberg group at the critical case and applications. Adv. Math. 231, 3259–3287 (2012)CrossRefzbMATHGoogle Scholar
  24. 24.
    Li, Y.: Moser–trudinger inequaity on compact Riemannian manifolds of dimension two. J. Partial Differ. Equa. 14, 163–192 (2001)zbMATHGoogle Scholar
  25. 25.
    Li, Y.: The existence of the extremal function of Moser–Trudinger inequality on compact Riemannian manifolds. Sci. China Ser. A 48, 618–648 (2005)CrossRefzbMATHGoogle Scholar
  26. 26.
    Li, Y., Ruf, B.: A sharp Trudinger-Moser type inequality for unbounded domains in \(\mathbb {R}^{n}\). Indiana Univ. Math. J. 57, 451–480 (2008)CrossRefzbMATHGoogle Scholar
  27. 27.
    Li, X., Yang, Y.: Extremal functions for singular Trudinger–Moser inequalities in the entire Euclidean space. J. Differential Equations 264, 4901–4943 (2018)CrossRefzbMATHGoogle Scholar
  28. 28.
    Lin, K.: Extremal functions for Moser’s inequality. Trans. Amer. Math. Soc. 348, 2663–2671 (1996)CrossRefzbMATHGoogle Scholar
  29. 29.
    Lions, P.L.: The concentration-compactness principle in the calculus of variations. The limit case. I. Rev. Mat. Iberoamericana 1, 145–201 (1985)CrossRefzbMATHGoogle Scholar
  30. 30.
    Lu, G., Zhu, M.: A sharp Moser–Trudinger type inequality involving L n, norm in the entire space \(\mathbb {R}^{n}\). arXiv:1703.00901
  31. 31.
    Mancini, G., Sandeep, K., Tintarev, C.: Trudinger–moser inequality in the hyperbolic space \(\mathbb {H}^{n}\). Adv. Nonlinear Anal. 2, 309–324 (2013)zbMATHGoogle Scholar
  32. 32.
    Mancini, G., Thizy, P.D.: Non–existence of extremals for the Adimurthi–Druet inequality. J. Differential Equations 266(2-3), 1051–1072 (2019)CrossRefzbMATHGoogle Scholar
  33. 33.
    Moser, J.: A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20(71), 1077–1092 (1970)zbMATHGoogle Scholar
  34. 34.
    Nguyen, V.H.: Extremal functions for the Moser-Trudinger inequality of Adimurthi–Druet type in \(W^{1,n}(\mathbb {R}^{n})\). Commun. Contemp. Math., in press.  https://doi.org/10.1142/S0219199718500232
  35. 35.
    Nguyen, V.H.: Improved Moser–Trudinger inequality for functions with mean value zero in \(\mathbb {R}^{n}\) and its extremal functions. Nonlinear Anal. 163, 127–145 (2017)CrossRefzbMATHGoogle Scholar
  36. 36.
    Nguyen, V.H.: Improved Moser–Trudinger inequality of Tintarev type in dimension n and the existence of its extremal functions. Ann. Global Anal. Geom. 54(2), 237–256 (2018)CrossRefzbMATHGoogle Scholar
  37. 37.
    Pohožaev, S.I.: On the eigenfunctions of the equation Δu + f(u) = 0. (Russian), Dokl. Akad. Nauk. SSSR 165, 36–39 (1965)Google Scholar
  38. 38.
    Ruf, B.: A sharp Trudinger–Moser type inequality for unbounded domains in \(\mathbb {R}^{2}\). J. Funct. Anal. 219, 340–367 (2005)CrossRefzbMATHGoogle Scholar
  39. 39.
    Struwe, M.: Critical points of embeddings of \(h^{1,n}_{0}\) into Orlicz spaces. Ann. Inst. H. Poincaré, Anal. Non Linéaire 5, 425–464 (1988)CrossRefzbMATHGoogle Scholar
  40. 40.
    Tintarev, C.: Trudinger–moser inequality with remainder terms. J. Funct. Anal. 266, 55–66 (2014)CrossRefzbMATHGoogle Scholar
  41. 41.
    Trudinger, N.S.: On imbedding into Orlicz spaces and some applications. J. Math. Mech. 17, 473–483 (1967)zbMATHGoogle Scholar
  42. 42.
    Yang, Y.: A sharp form of Moser–Trudinger inequality in high dimension. J. Funct. Anal. 239(1), 100–126 (2006)CrossRefzbMATHGoogle Scholar
  43. 43.
    Yang, Y.: Extremal functions for a sharp Moser–Trudinger inequality. Internat J. Math. 17, 331–338 (2006)CrossRefzbMATHGoogle Scholar
  44. 44.
    Yang, Y.: A sharp form of the Moser–Trudinger inequality on a compact Riemannian surface. Trans. Amer. Math. Soc. 359, 5761–5776 (2007)CrossRefzbMATHGoogle Scholar
  45. 45.
    Yang, Y.: Corrigendum to: a sharp form of Moser–Trudinger inequality in high dimension [J Funct. Anal., 239 (2006) 100–126; MR2258218]. J. Funct. Anal. 242, 669–671 (2007)CrossRefGoogle Scholar
  46. 46.
    Yang, Y.: Extremal functions for Trudinger–Moser inequalities of Adimurthi–Druet type in dimension two. J. Differential Equations 258, 3161–3193 (2015)CrossRefzbMATHGoogle Scholar
  47. 47.
    Yang, Y., Zhu, X.: Blow–up analysis concerning singular Trudinger–Moser inequalities in dimension two. J. Funct. Anal. 272, 3347–3374 (2017)CrossRefzbMATHGoogle Scholar
  48. 48.
    Yuan, A., Zhu, X.: An improved singular Trudinger–Moser inequality in unit ball. J. Math. Anal. Appl. 435, 244–252 (2016)CrossRefzbMATHGoogle Scholar
  49. 49.
    Yudovič, V. I.: Some estimates connected with integral operators and with solutions of elliptic equations, (Russian). Dokl. Akad. Nauk SSSR 138, 805–808 (1961)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institute of Research and DevelopmentDuy Tan UniversityDa NangVietnam

Personalised recommendations