Advertisement

Positivity

pp 1–6 | Cite as

Nonnegative sum-symmetric matrices and optimal-score partitions

  • Iosif PinelisEmail author
Article

Abstract

The main result of the note describes certain optimal-score partitions. This result is based on the fact that any nonnegative square matrix whose column sums are the same as the corresponding row sums can be represented as the sum of circuit matrices.

Keywords

Nonnegative matrices Sum-symmetric matrices Optimal-score partitions 

Mathematics Subject Classification

49K30 15B48 26D15 90C46 52A40 05A05 15A15 15A45 15B33 15B36 15B51 90C27 

Notes

References

  1. 1.
    Bapat, R.B., Raghavan, T.E.S.: Nonnegative Matrices and Applications. Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (1997).  https://doi.org/10.1017/CBO9780511529979 CrossRefzbMATHGoogle Scholar
  2. 2.
    Dantzig, G.B., Eaves, B.C., Rothblum, U.G.: A decomposition and scaling-inequality for line-sum-symmetric nonnegative matrices. SIAM J. Algebraic Discrete Methods 6(2), 237–241 (1985).  https://doi.org/10.1137/0606021 MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Dudley, R.M., Norvaiša, R.: Concrete Functional Calculus. Springer Monographs in Mathematics. Springer, New York (2011).  https://doi.org/10.1007/978-1-4419-6950-7 CrossRefzbMATHGoogle Scholar
  4. 4.
    Gravett, K.A.H.: Ordered abelian groups. Q. J. Math. Oxford Ser. 2(7), 57–63 (1956).  https://doi.org/10.1093/qmath/7.1.57 MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Hahn, H.: Über die nichtarchimedischen Größensysteme. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften, Wien, Mathematisch – Naturwissenschaftliche Klasse (Wien. Ber.) 116, 601–655 (1907)Google Scholar
  6. 6.
    Hall, Jr., M.: Combinatorial Theory. Blaisdell Publishing Co. Ginn and Co., Waltham (1967)Google Scholar
  7. 7.
    Levi, F.W.: Ordered groups. Proc. Indian Acad. Sci. Sect. A. 16, 256–263 (1942)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Pinelis, I.: An extension of Hall’s theorem. Ann. Comb. 6(1), 103–106 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Pinelis, I.: A discrete mass transportation problem for infinitely many sites, and general representant systems for infinite families. Math. Methods Oper. Res. 58(1), 105–129 (2003)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mathematical SciencesMichigan Technological UniversityHoughtonUSA

Personalised recommendations