, Volume 23, Issue 4, pp 789–809 | Cite as

A Kato class for the Khon Laplacian

  • Amor DrissiEmail author
  • Nedra Belhaj Rhouma


In this paper we establish an upper estimate and a 3G-theorem for the Green function of the Khon Laplacian \(\Delta _{{\mathbb {H}}}\) on a domain D of the Heisenberg group \({{\mathbb {H}}^n}\). We also establish a generalized triangle property which allows us to introduce a new Kato class for the ball.


Green function Heisenberg group Khon Laplacian Kato class 

Mathematics Subject Classification

34B27 35R03 



  1. 1.
    Aikawa, H., Kilpeläinen, T., Shanmugalingam, N., Zhong, X.: Boundary Harnack principle for \(p\)-harmonic functions in smooth Euclidean domains. Potential Anal. 26, 281–301 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Aizenman, M., Simon, B.: Brownian motion and Hamack’s inequality for Schrödinger operators. Commun. Pure Appl. Math. 35, 209–271 (1982)CrossRefzbMATHGoogle Scholar
  3. 3.
    Belhajrhouma, N., Bezzarga, M.: On a singular value problem and the boundary Harnack principle for the fractional Laplacian. In: Bakry, D., Beznea, L., Bucur, Gh, Röckner, M. (eds.) New trends in potential Theory, pp. 123–136. The Theta Foundation, Bucharest (2005)Google Scholar
  4. 4.
    Bonfiglioli, A., Lanconelli, E., Uguzzoni, F.: Stratified Lie Groups and Potential Theory for their Sub-Laplacians. Springer, Berlin (2007)zbMATHGoogle Scholar
  5. 5.
    Chung, K.L., Zhao, Z.: From Brownian Motion to Schrdingers Equation. Springer, New York (1995)CrossRefGoogle Scholar
  6. 6.
    Citti, G., Garofalo, N., Lanconelli, E.: Harnack’s inequality for sum of square of vecttor fields plus a potential. Am. J. Math. 115(3), 699–743 (1993)CrossRefzbMATHGoogle Scholar
  7. 7.
    Cranston, M., Fabes, E.B., Zhao, Z.: Conditional gauge and potential theory for the Schrödinger operator. Trans. Am. Math. Soc. 307(1), 171–194 (1988)zbMATHGoogle Scholar
  8. 8.
    Fabes, E.B., Stroock, D.W.: The L\(^p\)-integrability of Green’s function and fundamental solutions for elliptic and parabolic equations. Duke Math. J. 51, 997–1016 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Folland, G.B.: A fundamental solution for a subelliptic operator. Bull. Am. Math. Soc. 79, 373–376 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hansen, W.: Global comparison of perturbed Green functions. FG-Preprint 03-046, Fakultät für Mathematik, Universität Bielefeld (2003)Google Scholar
  11. 11.
    Hansen, W.: Uniform boundary Harnack principle and generalized triangle property. J. Funct. Anal. 226, 452–484 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hansen, W., Hueber, H.: The Dirichlet problem for sublaplacians on nilpotent Lie groups Geometric criteria for regularity. Math. Ann. 276, 537–547 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hinz, A.M., Kalf, H.: Subsolution estimates and Harnack inequality for Schrödinger operators. J. Reine Angew. Math. 404, 118–134 (1990)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Jerison, D.: Boundary behavior of harmonic functions in nontangentially accessible domains. Adv. Math. 46(1), 80–147 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kalton, N.J., Verbitsky, I.E.: Nonlinear equations and weighted norm inequalities. Trans. Am. Math. Soc. 351(9), 3441–3497 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Maagli, H., Zribi, M.: On a new Kato class and singular solutions of a nonlinear elliptic equation in bounded domains of \({\mathbb{R}}^n\). Positivity 9, 667–686 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Simon, B.: Schrödinger semigroups. Bull. Am. Math. Soc. (N.S.) 7, 447–526 (1982)CrossRefzbMATHGoogle Scholar
  18. 18.
    Stein, E.M.: Some problems in harmonic analysis suggested by symmetric spaces and semi-simple groups. Actes Congr. Int. Math. Nice 1, 179–189 (1970)Google Scholar
  19. 19.
    Uguzzoni, F., Lanconelli, E.: On the Poisson kernel for the Kohn Laplacian. Rend. Mat. Appl. 17, 659–677 (1997)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Zhang, Qi, Zhao, Z.: Singular solutions of semilinear elliptic and parabolic equations. Math. Ann. 310, 777–794 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Zhao, Z.: Conditional gauge with unbounded potential. Z. Wahrsch. Verw. Gebiete. 65, 13–18 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Zhao, Z.: Green function for Schrödinger operator and conditional Feynman–Kac gauge. J. Math. Anal. Appl. 116, 309–334 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Zhao, Z.: Uniform boundedness of conditional gauge and Schrödinger equations. Commun. Math. Phys. 93, 19–31 (1984)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Faculty of Sciences of TunisUniversity of Tunis El-ManarTunisTunisia

Personalised recommendations