Advertisement

Positivity

, Volume 23, Issue 4, pp 789–809 | Cite as

A Kato class for the Khon Laplacian

  • Amor DrissiEmail author
  • Nedra Belhaj Rhouma
Article
  • 33 Downloads

Abstract

In this paper we establish an upper estimate and a 3G-theorem for the Green function of the Khon Laplacian \(\Delta _{{\mathbb {H}}}\) on a domain D of the Heisenberg group \({{\mathbb {H}}^n}\). We also establish a generalized triangle property which allows us to introduce a new Kato class for the ball.

Keywords

Green function Heisenberg group Khon Laplacian Kato class 

Mathematics Subject Classification

34B27 35R03 

Notes

References

  1. 1.
    Aikawa, H., Kilpeläinen, T., Shanmugalingam, N., Zhong, X.: Boundary Harnack principle for \(p\)-harmonic functions in smooth Euclidean domains. Potential Anal. 26, 281–301 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Aizenman, M., Simon, B.: Brownian motion and Hamack’s inequality for Schrödinger operators. Commun. Pure Appl. Math. 35, 209–271 (1982)CrossRefzbMATHGoogle Scholar
  3. 3.
    Belhajrhouma, N., Bezzarga, M.: On a singular value problem and the boundary Harnack principle for the fractional Laplacian. In: Bakry, D., Beznea, L., Bucur, Gh, Röckner, M. (eds.) New trends in potential Theory, pp. 123–136. The Theta Foundation, Bucharest (2005)Google Scholar
  4. 4.
    Bonfiglioli, A., Lanconelli, E., Uguzzoni, F.: Stratified Lie Groups and Potential Theory for their Sub-Laplacians. Springer, Berlin (2007)zbMATHGoogle Scholar
  5. 5.
    Chung, K.L., Zhao, Z.: From Brownian Motion to Schrdingers Equation. Springer, New York (1995)CrossRefGoogle Scholar
  6. 6.
    Citti, G., Garofalo, N., Lanconelli, E.: Harnack’s inequality for sum of square of vecttor fields plus a potential. Am. J. Math. 115(3), 699–743 (1993)CrossRefzbMATHGoogle Scholar
  7. 7.
    Cranston, M., Fabes, E.B., Zhao, Z.: Conditional gauge and potential theory for the Schrödinger operator. Trans. Am. Math. Soc. 307(1), 171–194 (1988)zbMATHGoogle Scholar
  8. 8.
    Fabes, E.B., Stroock, D.W.: The L\(^p\)-integrability of Green’s function and fundamental solutions for elliptic and parabolic equations. Duke Math. J. 51, 997–1016 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Folland, G.B.: A fundamental solution for a subelliptic operator. Bull. Am. Math. Soc. 79, 373–376 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hansen, W.: Global comparison of perturbed Green functions. FG-Preprint 03-046, Fakultät für Mathematik, Universität Bielefeld (2003)Google Scholar
  11. 11.
    Hansen, W.: Uniform boundary Harnack principle and generalized triangle property. J. Funct. Anal. 226, 452–484 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hansen, W., Hueber, H.: The Dirichlet problem for sublaplacians on nilpotent Lie groups Geometric criteria for regularity. Math. Ann. 276, 537–547 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hinz, A.M., Kalf, H.: Subsolution estimates and Harnack inequality for Schrödinger operators. J. Reine Angew. Math. 404, 118–134 (1990)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Jerison, D.: Boundary behavior of harmonic functions in nontangentially accessible domains. Adv. Math. 46(1), 80–147 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kalton, N.J., Verbitsky, I.E.: Nonlinear equations and weighted norm inequalities. Trans. Am. Math. Soc. 351(9), 3441–3497 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Maagli, H., Zribi, M.: On a new Kato class and singular solutions of a nonlinear elliptic equation in bounded domains of \({\mathbb{R}}^n\). Positivity 9, 667–686 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Simon, B.: Schrödinger semigroups. Bull. Am. Math. Soc. (N.S.) 7, 447–526 (1982)CrossRefzbMATHGoogle Scholar
  18. 18.
    Stein, E.M.: Some problems in harmonic analysis suggested by symmetric spaces and semi-simple groups. Actes Congr. Int. Math. Nice 1, 179–189 (1970)Google Scholar
  19. 19.
    Uguzzoni, F., Lanconelli, E.: On the Poisson kernel for the Kohn Laplacian. Rend. Mat. Appl. 17, 659–677 (1997)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Zhang, Qi, Zhao, Z.: Singular solutions of semilinear elliptic and parabolic equations. Math. Ann. 310, 777–794 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Zhao, Z.: Conditional gauge with unbounded potential. Z. Wahrsch. Verw. Gebiete. 65, 13–18 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Zhao, Z.: Green function for Schrödinger operator and conditional Feynman–Kac gauge. J. Math. Anal. Appl. 116, 309–334 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Zhao, Z.: Uniform boundedness of conditional gauge and Schrödinger equations. Commun. Math. Phys. 93, 19–31 (1984)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Faculty of Sciences of TunisUniversity of Tunis El-ManarTunisTunisia

Personalised recommendations