Advertisement

Positivity

, Volume 23, Issue 1, pp 21–34 | Cite as

Some topological properties and fixed point results in cone metric spaces over Banach algebras

  • Huaping Huang
  • Guantie DengEmail author
  • Stojan Radenović
Article
  • 114 Downloads

Abstract

This note is intended as an attempt at presenting some topological properties in cone metric spaces over Banach algebras. Moreover, the corresponding fixed point results are given. In addition, the P property, T-stability of Picard’s iteration, well-posedness of fixed point problems are also displayed. Our results complement and generalize some previous results in the existing literature.

Keywords

c-Sequence \(\theta \)-Sequence T-stability P property Well-posedness 

Mathematics Subject Classification

47H10 54H25 

Notes

Acknowledgements

The authors thank Professor Zoran D. Mitrovic for their valuable comments and suggestions which improved greatly the quality of this paper. The research was partially supported by the National Natural Science Foundation of China (No. 11271045) and by the Science and Technology Research Project of Education Department in Hubei Province of China (No. Q20172505).

References

  1. 1.
    Abbas, M., Parvaneh, V., Razani, A.: Periodic points of \(T\)-Ćirić generalized contraction mappings in ordered metric spaces. Georgian Math. J. 19(4), 597–610 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alnafei, S.H., Radenović, S., Shahzad, N.: Fixed point theorems for mappings with convex diminishing diameters on cone metric spaces. Appl. Math. Lett. 24(12), 2162–2166 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Asadi, M., Rhoades, B.E., Soleimani, H.: Some notes on the paper “The equivalence of cone metric spaces and metric spaces”. Fixed Point Theory Appl. 2012, 87 (2012)CrossRefzbMATHGoogle Scholar
  4. 4.
    Azam, A., Fisher, B., Khan, M.: Common fixed point theorems in complex valued metric spaces. Numer. Funct. Anal. Optim. 32(3), 243–253 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bakhtin, I.A.: The contraction mapping principle in almost metric space. Funct. Anal. Ulyanovsk. Gos. Ped. Inst. Ulyanovsk 30, 26–37 (1989). (Russian)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Czerwik, S.: Contraction mappings in \(b\)-metric spaces. Acta Math. Inform. Univ. Ostraviensis 1, 5–11 (1993)MathSciNetzbMATHGoogle Scholar
  7. 7.
    de Blasi, F.S., Myjak, J.: Well-posedness of fixed point problems. Comptes Rendus de L’Académie Des Sciences Paris 308, 51–54 (1989)zbMATHGoogle Scholar
  8. 8.
    Du, W.-S.: A note on cone metric fixed point theory and its equivalence. Nonlinear Anal. 72(5), 2259–2261 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Du, W.-S., Karapinıar, E.: A note on cone \(b\)-metric and its related results: generalizations or equivalence? Fixed Point Theory Appl. 2013, 210 (2013)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Ercan, Z.: On the end of the cone metric spaces. Topol. Appl. 166, 10–14 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Feng, Y., Mao, W.: The equivalence of cone metric spaces and metric spaces. Fixed Point Theory 11(2), 259–264 (2010)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Huang, H., Radenović, S.: Common fixed point theorems of generalized Lipschitz mappings in cone \(b\)-metric spaces over Banach algebras and applications. J. Nonlinear Sci. Appl. 8(5), 787–799 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Huang, H., Radenović, S.: Some fixed point results of generalized Lipschitz mappings on cone \(b\)-metric spaces over Banach algebras. J. Comput. Anal. Appl. 20(3), 566–583 (2016)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Huang, H., Xu, S., Liu, H., Radenović, S.: Fixed point theorems and \(T\)-stability of Picard iteration for generalized Lipschitz mappings in cone metric spaces over Banach algebras. J. Comput. Anal. Appl. 20(5), 869–888 (2016)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Huang, H., Xu, S.: Some new topological properties in cone metric spaces. J. Math. PRC 35(3), 513–518 (2015)Google Scholar
  16. 16.
    Huang, L., Zhang, X.: Cone metric spaces and fixed point theorems of contractive mappings. J. Math. Anal. Appl. 332(2), 1468–1476 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Janković, S., Kadelburg, Z., Radenović, S.: On cone metric spaces: a survey. Nonlinear Anal. 74(7), 2591–2601 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Jovanović, M., Kadelburg, Z., Radenović, S.: Common fixed point results in metric-type spaces. Fixed Point Theory Appl. (2010).  https://doi.org/10.1155/2010/978121 MathSciNetzbMATHGoogle Scholar
  19. 19.
    Kadelburg, Z., Radenović, S., Rakočević, V.: A note on the equivalence of some metric and cone metric fixed point results. Appl. Math. Lett. 24(3), 370–374 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Liu, H., Xu, S.: Cone metric spaces with Banach algebras and fixed point theorems of generalized Lipschitz mappings. Fixed Point Theory Appl. 2013, 320 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Malhotra, S.K., Sharma, J.B., Shukla, S.: Fixed points of \(\alpha \)-admissible mappings in cone metric spaces with Banach algebra. Int. J. Anal. Appl. 9(1), 9–18 (2015)zbMATHGoogle Scholar
  22. 22.
    Matthews, S.G.: Partial metric topology. Ann. N. Y. Acad. Sci. 728, 183–197 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Mustafa, Z., Sims, B.: A new approach to generalized metric space. J. Nonlinear Convex Anal. 7(2), 289–297 (2006)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Öner, T.: Some topological properties of fuzzy cone metric spaces. J. Nonlinear Sci. Appl. 9(3), 799–805 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Rezapour, Sh, Derafshpour, M., Hamlbarani, R.: A review on topological properties of cone metric spaces. J. Bone Jt. Surg. s2–9(4), 615–632 (2008)Google Scholar
  26. 26.
    Rezapour, S., Hamlbarani, R.: Some notes on the paper “Cone metric spaces and fixed point theorems of contractive mappings”. J. Math. Anal. Appl. 345(2), 719–724 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Shukla, S., Balasubramanian, S., Pavlović, M.: A generalized Banach fixed point theorem. Bull. Malays. Math. Sci. Soc. 39(4), 1529–1539 (2016)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Huaping Huang
    • 1
  • Guantie Deng
    • 1
    Email author
  • Stojan Radenović
    • 2
  1. 1.School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex SystemsMinistry of EducationBeijingChina
  2. 2.Faculty of Mechanical EngineeringUniversity of BelgradeBeogradSerbia

Personalised recommendations