, Volume 22, Issue 5, pp 1371–1385 | Cite as

Higher-order generalized Studniarski epiderivative and its applications in set-valued optimization

  • Nguyen Le Hoang AnhEmail author


In the paper, we introduce the higher-order generalized Studniarski epiderivative of set-valued maps. Via this concept, some results on optimality conditions and duality for set-valued optimization problems are established.


The higher-order generalized Studniarski epiderivative Weak efficient solution Strict efficient solution Optimality condition Duality 

Mathematics Subject Classification

49J52 54C60 90C46 90C56 



The author is grateful to an anonymous referee for his/her valuable comments which helps to improve the manuscript.


  1. 1.
    Anh, N.L.H.: Higher-order optimality conditions in set-valued optimization using Studniarski derivatives and applications to duality. Positivity 18, 449–473 (2014)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Anh, N.L.H.: Higher-order optimality conditions for strict and weak efficient solutions in set-valued optimization. Positivity 20, 499–514 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Anh, N.L.H.: Mixed type duality for set-valued optimization problems via higher-order radial epiderivatives. Numer. Func. Anal. Optim. 37, 823–838 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Birkhauser, Boston (1990)zbMATHGoogle Scholar
  5. 5.
    Bector, C.R., Bector, M.K.: On various duality theorems in nonlinear programming. J. Optim. Theory Appl. 63, 509–515 (1987)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bednarczuk, E.M., Song, W.: Contingent epiderivative and its applications to set-valued optimization. Control Cybern. 27, 376–386 (1998)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Borwein, J.M.: On the existence of Pareto efficient points. Math. Oper. Res. 8, 64–73 (1983)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Chen, C.R., Li, S.J., Teo, K.L.: Higher order weak epiderivatives and applications to duality and optimality conditions. Comput. Math. Appl. 57, 1389–1399 (2009)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Corley, H.W.: Optimality conditions for maximizations of set-valued functions. J. Optim. Theory Appl. 58, 1–10 (1988)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Crepsi, G.P., Ginchev, I., Rocca, M.: First-order optimality conditions in set-valued optimization. Math. Methods Oper. Res. 63, 87–106 (2006)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Durea, M.: Optimality conditions for weak and firm efficiency in set-valued optimization. J. Math. Anal. Appl. 344, 1018–1028 (2008)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Flores-Bazán, F., Jiménez, B.: Strict efficiency in set-valued optimization. SIAM J. Control Optim. 48, 881–908 (2009)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Gerth, C., Weidner, P.: Nonconvex separation theorems and some applications in vector optimization. J. Optim. Theory Appl. 67, 297–320 (1990)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Göpfert, A., Riahi, H., Tammer, C., Zǎlinescu, C.: Variational Methods in Partially Ordered Spaces. Springer, Berlin (2003)zbMATHGoogle Scholar
  15. 15.
    Jahn, J.: Vector Optimization: Theory, Applications, and Extensions. Springer, Berlin (2004)CrossRefGoogle Scholar
  16. 16.
    Jahn, J., Rauh, R.: Contingent epiderivatives and set-valued optimization. Math. Methods Oper. Res. 46, 193–211 (1997)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Jahn, J., Khan, A.A.: Generalized contingent epiderivatives in set-valued optimization: optimality conditions. Numer. Func. Anal. Optim. 23, 807–832 (2002)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Khan, A.A., Tammer, C., Zălinescu, C.: Set-valued Optimization: An Introduction with Applications. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  19. 19.
    Li, S.J., Chen, C.R.: Higher-order optimality conditions for Henig efficient solutions in set-valued optimization. J. Math. Anal. Appl. 323, 1184–1200 (2006)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Li, S.J., Teo, K.L., Yang, X.Q.: Higher-order Mond-Weir duality for set-valued optimization. J. Comput. Appl. Math. 217, 339–349 (2008)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Li, S.J., Yang, X.Q., Chen, G.Y.: Nonconvex vector optimization of set-valued mappings. J. Math. Anal. Appl. 283, 337–350 (2003)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Luc, D.T.: Theory of Vector Optimization. Springer, Berlin (1989)CrossRefGoogle Scholar
  23. 23.
    Luc, D.T.: Contingent derivatives of set-valued maps and applications to vector optimization. Math. Prog. 50, 99–111 (1991)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Mond, B., Weir, T.: Generalized concavity and duality. In: Schaible, S., Ziemba, W.T. (eds.) Generalized Concavity in Optimization and Economics, pp. 263–279. Academic Press, New York (1981)zbMATHGoogle Scholar
  25. 25.
    Mond, B., Weir, T.: Generalised convexity and duality in multiple objecttive programming. Bull. Aust. Math. Soc. 39, 287–299 (1989)CrossRefGoogle Scholar
  26. 26.
    Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, Vol. I Basic Theory. Springer, Berlin (2006)Google Scholar
  27. 27.
    Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, Vol. II Applications. Springer, Berlin (2006)Google Scholar
  28. 28.
    Rockafellar, R.T., Wets, R.J.B.: Variational Analysis, 3rd edn. Springer, Berlin (2009)zbMATHGoogle Scholar
  29. 29.
    Studniarski, M.: Necessary and sufficient conditions for isolated local minima of nonsmooth functions. SIAM J. Control Optim. 24, 1044–1049 (1986)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Sun, X.K., Li, S.J.: Generalized second-order contingent epiderivatives in parametric vector optimization problems. J. Optim. Theory Appl. 58, 351–363 (2014)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Wang, Q.L., Li, S.J.: Generalized higher-order optimality conditions for set-valued optimization under Henig efficiency. Numer. Func. Anal. Optim. 30, 849–869 (2009)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Wang, Q.L., Li, S.J., Chen, C.R.: Higher-order generalized adjacent derivative and applications to duality for set-valued optimization. Taiwan. J. Math. 15, 1021–1036 (2011)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Weir, T.: Proper efficiency and duality for vector valued optimization problems. Bull. Aust. Math. Soc. 43, 21–34 (1987)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Wolfe, P.: A duality theorem for nonlinear programming. Q. Appl. Math. 19, 239–244 (1961)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Applied Analysis Research Group, Faculty of Mathematics and StatisticsTon Duc Thang UniversityHo Chi Minh CityVietnam

Personalised recommendations