Advertisement

Positivity

, Volume 22, Issue 5, pp 1223–1239 | Cite as

Levitin–Polyak well-posedness for strong bilevel vector equilibrium problems and applications to traffic network problems with equilibrium constraints

  • L. Q. Anh
  • N. V. Hung
Article
  • 58 Downloads

Abstract

In this paper we consider strong bilevel vector equilibrium problems and introduce the concepts of Levitin–Polyak well-posedness and Levitin–Polyak well-posedness in the generalized sense for such problems. The notions of upper/lower semicontinuity involving variable cones for vector-valued mappings and their properties are proposed and studied. Using these generalized semicontinuity notions, we investigate sufficient and/or necessary conditions of the Levitin–Polyak well-posedness for the reference problems. Some metric characterizations of these Levitin–Polyak well-posedness concepts in the behavior of approximate solution sets are also discussed. As an application, we consider the special case of traffic network problems with equilibrium constraints.

Keywords

Bilevel equilibrium problems Traffic network problems with equilibrium constraints Levitin–Polyak well-posedness Upper (lower) semicontinuity involving variable cone 

Mathematics Subject Classification

49K40 90C29 90C31 91C10 

Notes

Acknowledgements

The authors wish to thank the anonymous referees for the careful reviews and valuable comments that helped us significantly improve the presentation of the paper. This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 101.01-2017.18.

References

  1. 1.
    Anh, L.Q., Hung, N.V.: Stability of solution mappings for parametric bilevel vector equilibrium problems. Comput. Appl. Math. 31, 747–757 (2017)Google Scholar
  2. 2.
    Anh, L.Q., Hien, D.V.: On well-posedness for parametric vector quasiequilibrium problems with moving cones. Appl. Math. 61, 651–668 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Anh, L.Q., Khanh, P.Q.: Semicontinuity of solution sets to parametric quasivariational inclusions with applications to traffic networks II: lower semicontinuities. Set-Valued Anal. 16, 943–960 (2008)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Anh, L.Q., Khanh, P.Q., Van, D.T.M., Yao, J.C.: Well-posedness for vector quasiequilibria. Taiwan. J. Math. 13, 713–737 (2009)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Anh, L.Q., Khanh, P.Q., Van, D.T.M.: Well-posedness under relaxed semicontinuity for bilevel equilibrium and optimization problems with equilibrium constraints. J. Optim. Theory Appl. 153, 42–59 (2012)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Birkhäuser, Boston (1990)zbMATHGoogle Scholar
  7. 8.
    Bao, T.Q., Mordukhovich, B.S.: Necessary conditions in multiobjective optimization with equilibrium constraints. J. Optim. Theory Appl. 135, 179–203 (2007)MathSciNetCrossRefGoogle Scholar
  8. 9.
    Bao, T.Q., Mordukhovich, B.S.: Sufficient optimality conditions for global Pareto solutions to multiobjective problems with equilibrium constraints. J. Nonlinear Convex Anal. 15, 105–127 (2014)MathSciNetzbMATHGoogle Scholar
  9. 10.
    Bento, G.C., Cruz Neto, J.X., Lopes, J.O., Soares, J.R., Soubeyran, P.A.: Generalized proximal distance for bilevel equilibrium problems. SIAM J. Optim 26, 810–830 (2016)MathSciNetCrossRefGoogle Scholar
  10. 11.
    Chadli, O., Ansari, Q.H., Al-Homidan, S.: Existence of solutions and algorithms for bilevel vector equilibrium problems: an auxiliary principle technique. J. Optim. Theory Appl. 172, 726–758 (2017)MathSciNetCrossRefGoogle Scholar
  11. 12.
    Chen, J.W., Wan, Z., Cho, Y.J.: The existence of solutions and well-posedness for bilevel mixed equilibrium problems in Banach spaces. Taiwan. J. Math. 17, 725–748 (2013)MathSciNetCrossRefGoogle Scholar
  12. 13.
    Chen, J.W., Wan, Z.P., Zou, Y.Z.: Bilevel invex equilibrium problems with applications. Optim. Lett. 8, 447–461 (2014)MathSciNetCrossRefGoogle Scholar
  13. 14.
    De Luca, M.: Generalized quasi-variational inequalities and traffic equilibrium problem. In: Giannessi, F., Maugeri, A. (eds.) Variational Inequalities and Networks Equilibrium Problems. Plenum Press, New York (1995)Google Scholar
  14. 15.
    Ding, X.P.: Existence and iterative algorithm of solutions for a class of bilevel generalized mixed equilibrium problems in Banach spaces. J. Glob. Optim. 53, 525–537 (2012)MathSciNetCrossRefGoogle Scholar
  15. 16.
    Ding, X.P.: A new class of bilevel generalized mixed equilibrium problems in Banach spaces. Acta Math. Scientia 32, 1571–1583 (2012)MathSciNetCrossRefGoogle Scholar
  16. 17.
    Dinh, B.V., Muu, L.D.: On penalty and gap function methods for bilevel equilibrium problems. J. Appl. Math. 2011, 1–14 (2011)MathSciNetCrossRefGoogle Scholar
  17. 18.
    Duc, P.M., Muu, L.D.: A splitting algorithm for a class of bilevel equilibrium problems involving nonexpansive mappings. Optimization 65, 1855–1866 (2017). (online first)MathSciNetCrossRefGoogle Scholar
  18. 19.
    Fang, Y.P., Hu, R., Huang, N.J.: Well-posedness for equilibrium problems and for optimization problems with equilibrium constraints. Comput. Math. Appl. 55, 89–100 (2008)MathSciNetCrossRefGoogle Scholar
  19. 20.
    Hu, R., Fang, Y.P.: Levitin–Polyak well-posedness of variational inequalities. Nonlinear Anal. 72, 373–381 (2010)MathSciNetCrossRefGoogle Scholar
  20. 21.
    Huang, X.X., Yang, X.Q.: Generalized Levitin–Polyak well-posedness in constrained optimization. SIAM J. Optim. 17, 243–258 (2006)MathSciNetCrossRefGoogle Scholar
  21. 22.
    Huang, X.X., Yang, X.Q.: Levitin–Polyak well-posedness of constrained vector optimization problems. J. Glob. Optim. 37, 287–304 (2007)MathSciNetCrossRefGoogle Scholar
  22. 23.
    Khanh, P.Q., Plubtieng, S., Sombut, K.: LP well-posedness for bilevel vector equilibrium and optimization problems with equilibrium constraints. Abstr. Appl. Anal. 2014, 1–7 (2014)MathSciNetCrossRefGoogle Scholar
  23. 24.
    Levitin, E.S., Polyak, B.T.: Convergence ofminimizing sequences in conditional extremum problem. Soiviet Math. Dokl. 7, 764–767 (1966)zbMATHGoogle Scholar
  24. 25.
    Li, X.B., Xia, F.Q.: Levitin–Polyak well-posedness of a generalized mixed variational inequality in Banach spaces. Nonlinear Anal. 75, 2139–2153 (2012)MathSciNetCrossRefGoogle Scholar
  25. 26.
    Lignola, M.B., Morgan, J.: Well-posedness for optimization problems with constraints defined by variational inequalities having a unique solution. J. Glob. Optim. 16, 57–67 (2000)MathSciNetCrossRefGoogle Scholar
  26. 27.
    Lignola, M.B., Morgan, J.: \(\alpha \)-Well-posedness for Nash equilibria and for optimization problems with Nash equilibrium constraints. J. Glob. Optim. 36, 439–459 (2006)MathSciNetCrossRefGoogle Scholar
  27. 28.
    Maugeri, A.: Variational and quasi-variational inequalities in network flow models. Recent developments in theory and algorithms. In: Giannessi, F., Maugeri, A. (eds.) Variational Inequalities and Network Equilibrium Problems. Plenum Press, New York (1995)zbMATHGoogle Scholar
  28. 29.
    Mordukhovich, B.S.: Equilibrium problems with equilibrium constraints via multiobjective optimization. Optim. Methods Softw. 19, 479–492 (2004)MathSciNetCrossRefGoogle Scholar
  29. 30.
    Mordukhovich, B.S.: Multiobjective optimization problems with equilibrium constraints. Math. Program. 117, 331–354 (2009)MathSciNetCrossRefGoogle Scholar
  30. 31.
    Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, II: Applications. Grundlehren Series (Fundamental Principles of Mathematical Sciences), vol. 331. Springer, Berlin (2006)Google Scholar
  31. 32.
    Moudafi, A.: Proximal methods for a class of bilevel monotone equilibrium problems. J. Glob. Optim. 47, 287–292 (2010)MathSciNetCrossRefGoogle Scholar
  32. 33.
    Peng, J.W., Wu, S.Y., Wang, Y.: Levitin–Polyak well-posedness of generalized vector quasi-equilibrium problems with functional constraints. J. Glob. Optim. 52, 779–795 (2012)MathSciNetCrossRefGoogle Scholar
  33. 34.
    Peng, J.W., Wang, Y., Wu, S.Y.: Levitin–Polyak well-posedness of generalized vector equilibrium problems. Taiwan. J. Math. 15, 2311–2330 (2011)MathSciNetCrossRefGoogle Scholar
  34. 35.
    Rakocẽvíc, V.: Measures of noncompactnaess and some applications. Filomat 12, 87–120 (1998)zbMATHGoogle Scholar
  35. 36.
    Smith, M.J.: The existence, uniqueness and stability of traffic equilibrium. Trans. Res. 138, 295–304 (1979)CrossRefGoogle Scholar
  36. 37.
    Tanaka, T.: Generalized semicontinuity and existence theorems for cone saddle points. Appl. Math. Optim. 36, 313–322 (1997)MathSciNetCrossRefGoogle Scholar
  37. 38.
    Tikhonov, A.N.: On the stability of the functional optimization problem. Soviet Comput. Math. Math. Phys. 6, 28–33 (1966)CrossRefGoogle Scholar
  38. 39.
    Van Ackere, A.: The principal/agent paradigm: characterizations and computations. Eur. J. Oper. Res. 70, 83–103 (1993)CrossRefGoogle Scholar
  39. 40.
    Wangkeeree, R., Yimmuang, P.: Existence and algorithms for the bilevel new generalized mixed equilibrium problems in Banach spaces. Appl. Math. Comput. 219, 3022–3038 (2012)MathSciNetzbMATHGoogle Scholar
  40. 41.
    Wardrop, J.G.: Some theoretical aspects of road traffic research. Proc. Inst. Civ. Eng. II, 325–378 (1952)Google Scholar
  41. 42.
    Ye, J.J., Zhu, Q.J.: Multiobjective optimization problems with variational inequality constraints. Math. Program. 96, 139–160 (2003)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics, Teacher CollegeCantho UniversityCanthoVietnam
  2. 2.Department for Management of Science and Technology DevelopmentTon Duc Thang UniversityHo Chi Minh CityVietnam
  3. 3.Faculty of Mathematics and StatisticsTon Duc Thang UniversityHo Chi Minh CityVietnam

Personalised recommendations