Indirect estimation of interregional freight flows with a real-valued genetic algorithm

  • Javier Rubio-HerreroEmail author
  • Jesús Muñuzuri


This paper introduces a method for estimating the interregional transportation of certain commodities in those cases where the commodity flows are not readily available and only aggregated flows per origin-destination pair are provided. We use a doubly-constrained gravity model to find a matrix of aggregated flows that is as similar as possible to the available data, in the sense of the standardized root mean square error. This model is calibrated via a real-valued genetic algorithm that uses a combination of global and local searches to find a set of optimal parameters of the deterrence function under study in the gravity model. This method is introduced as an application to estimating the disaggregated flows of ten different products among the fifteen regions of peninsular Spain between 2007 and 2016. After testing several formulations, we conclude that an exponential deterrence function calibrated with data from 2010 is as effective to estimate the flows in this 10-year span as other more complex options, which emphasizes the time transferability of our model.


Transport modeling Metaheuristics Logistics Spatial analysis 


Author Contributions

Javier Rubio-Herrero: Literature search and review, manuscript writing, statistical tests, and optimization methods. Jesús Muñuzuri: Literature search and review, manuscript writing.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Arbués, P., Baños, J.F.: A dynamic approach to road freight flows modeling in Spain. Transportation 43(3), 549–564 (2016)CrossRefGoogle Scholar
  2. Babri, S., Jørnsten, K., Viertel, M.: Application of gravity models with a fixed component in the international trade flows of coal, iron ore and crude oil. Marit. Econ. Logist. 19(2), 334–351 (2017)CrossRefGoogle Scholar
  3. Balcan, D., Colizza, V., Gonçalves, B., Hu, H., Ramasco, J.J., Vespignani, A.: Multiscale mobility networks and the spatial spreading of infectious diseases. Proc. Natl. Acad. Sci. 106(51), 21484–21489 (2009)CrossRefGoogle Scholar
  4. Bensassi, S., Márquez-Ramos, L., Martínez-Zarzoso, I., Suárez-Burguet, C.: Relationship between logistics infrastructure and trade: evidence from Spanish regional exports. Transp. Res. Part A Policy Pract. 72, 47–61 (2015)CrossRefGoogle Scholar
  5. Bureau of Transportation Statistics (2017a) Freight facts & figures 2017. URL, [Online; Accessed 18 June 2018]
  6. Bureau of Transportation Statistics (2017b) Freight facts & figures 2017—Chapter 2: freight moved in domestic and international trade. Table 2-1, Weight of shipments by transportation mode. URL, [Online; Accessed 29 Nov 2018]
  7. Cascetta, E., Pagliara, F., Papola, A.: Alternative approaches to trip distribution modelling: a retrospective review and suggestions for combining different approaches. Pap. Reg. Sci. 86(4), 597–620 (2007)CrossRefGoogle Scholar
  8. Cascetta, E., Marzano, V., Papola, A.: Multi-regional input-output models for freight demand simulation at a national level. In: Ben-Akiva, M., Meersman, H., Voorde, E.V.D. (eds.) Recent Developments in Transport Modelling: Lessons for the Freight Sector, pp. 93–116. Emerald Group Publishing Limited (2008)Google Scholar
  9. Celik, H.M.: Modeling freight distribution using artificial neural networks. J. Transp. Geogr. 12(2), 141–148 (2004)CrossRefGoogle Scholar
  10. Celik, H.M.: Sample size needed for calibrating trip distribution and behavior of the gravity model. J. Transp. Geogr. 18(1), 183–190 (2010)CrossRefGoogle Scholar
  11. Celik, H.M., Guldmann, J.M.: Spatial interaction modeling of interregional commodity flows. Socio-Econ. Plan. Sci. 41(2), 147–162 (2007)CrossRefGoogle Scholar
  12. Chow, J.Y., Yang, C.H., Regan, A.C.: State-of-the art of freight forecast modeling: lessons learned and the road ahead. Transportation 37(6), 1011–1030 (2010)CrossRefGoogle Scholar
  13. Delgado, J.C., Bonnel, P.: Level of aggregation of zoning and temporal transferability of the gravity distribution model: the case of Lyon. J. Transp. Geogr. 51, 17–26 (2016)CrossRefGoogle Scholar
  14. Dennett, A., Wilson, A.: A multilevel spatial interaction modelling framework for estimating interregional migration in Europe. Environ. Plan. A 45(6), 1491–1507 (2013)CrossRefGoogle Scholar
  15. de Grange, L., Ibeas, A., González, F.: A hierarchical gravity model with spatial correlation: mathematical formulation and parameter estimation. Netw. Spat. Econ. 11(3), 439–463 (2011)CrossRefGoogle Scholar
  16. Diplock, G., Openshaw, S.: Using simple genetic algorithms to calibrate spatial interaction models. Geogr. Anal. 28(3), 262–279 (1996)CrossRefGoogle Scholar
  17. Dréo, J., Pétrowski, A., Siarry, P., Taillard, E.: Metaheuristics for hard optimization: methods and case studies. Springer, Berlin (2006)Google Scholar
  18. Eurostat (n.d.) Freight transport statistics. URL, [Online; Accessed 18 June 2018]
  19. Furness, K.: Time function iteration. Traffic Eng. Control 7(7), 458–460 (1965)Google Scholar
  20. Grosche, T., Rothlauf, F., Heinzl, A.: Gravity models for airline passenger volume estimation. J. Air Transp. Manag. 13(4), 175–183 (2007)CrossRefGoogle Scholar
  21. Haupt, R.L., Haupt, S.E.: Practical Genetic Algorithms. Wiley (2004)Google Scholar
  22. Havenga, J.H., Simpson, Z.P.: National freight demand modelling: a tool for macrologistics management. Int. J. Logist. Manag. 29(4), 1171–1195 (2018)CrossRefGoogle Scholar
  23. Homaifar, A., Qi, C.X., Lai, S.H.: Constrained optimization via genetic algorithms. Simulation 62(4), 242–253 (1994)CrossRefGoogle Scholar
  24. Jebari, K., Madiafi, M.: Selection methods for genetic algorithms. Int. J. Emerg. Sci. 3(4), 333–344 (2013)Google Scholar
  25. Jin, P.J., Cebelak, M., Yang, F., Zhang, J., Walton, C.M., Ran, B.: Location-based social networking data: exploration into use of doubly constrained gravity model for origin-destination estimation. Transp. Res. Rec. 2430(1), 72–82 (2014)CrossRefGoogle Scholar
  26. Kapur, J.N.: Maximum-Entropy Models in Science and Engineering. Wiley, Hoboken (1989)Google Scholar
  27. Kim, C., Choi, C.G., Cho, S., Kim, D.: A comparative study of aggregate and disaggregate gravity models using seoul metropolitan subway trip data. Transp. Plan. Technol. 32(1), 59–70 (2009)CrossRefGoogle Scholar
  28. Knudsen, D.C., Fotheringham, A.S.: Matrix comparison, goodness-of-fit, and spatial interaction modeling. Int. Reg. Sci. Rev. 10(2), 127–147 (1986)CrossRefGoogle Scholar
  29. Kompil, M., Celik, H.M.: Modelling trip distribution with fuzzy and genetic fuzzy systems. Transp. Plan. Technol. 36(2), 170–200 (2013)CrossRefGoogle Scholar
  30. Lenormand, M., Huet, S., Gargiulo, F., Deffuant, G.: A universal model of commuting networks. PLoS ONE 7(10), e45985 (2012)CrossRefGoogle Scholar
  31. Lenormand, M., Bassolas, A., Ramasco, J.J.: Systematic comparison of trip distribution laws and models. J. Transp. Geogr. 51, 158–169 (2016)CrossRefGoogle Scholar
  32. Mao, S., Demetsky, M.J.: Calibration of the gravity model for truck freight flow distribution. Pennsylvania Transportation Institute, Pennsylvania State University, Technical Report (2002)Google Scholar
  33. Martínez, L.M., Viegas, J.M.: A new approach to modelling distance-decay functions for accessibility assessment in transport studies. J. Transp. Geogr. 26, 87–96 (2013)CrossRefGoogle Scholar
  34. McArthur, D.P., Kleppe, G., Thorsen, I., Ubøe, J.: The spatial transferability of parameters in a gravity model of commuting flows. J. Transp. Geogr. 19(4), 596–605 (2011)CrossRefGoogle Scholar
  35. Ministerio de Fomento - Secretaría General Técnica (2016) Los Transportes y las Infraestructuras. Informe anual 2015. URL, [Online; Accessed 15 July 2019]
  36. Ministerio de Fomento de España (2008) Estudio de costes del transporte de mercancías por carretera. URL, [Online; Accessed 18 June 2018]
  37. Mozolin, M., Thill, J.C., Usery, E.L.: Trip distribution forecasting with multilayer perceptron neural networks: a critical evaluation. Transp. Res. Part B Methodol. 34(1), 53–73 (2000)CrossRefGoogle Scholar
  38. Openshaw, S.: Neural network, genetic, and fuzzy logic models of spatial interaction. Environ. Plan. A 30(10), 1857–1872 (1998)CrossRefGoogle Scholar
  39. Ortúzar J. de D., Willumsen, L.G.: Modelling Transport. Wiley, Hoboken (2011)CrossRefGoogle Scholar
  40. Pooler, J.: An extended family of spatial interaction models. Prog. Hum. Geogr. 18(1), 17–39 (1994)CrossRefGoogle Scholar
  41. Richards, F.: A flexible growth function for empirical use. J. Exp. Bot. 10(2), 290–301 (1959)CrossRefGoogle Scholar
  42. Shrewsbury, J.S.: Calibration of trip distribution by generalised linear models. New Zealand Transport Agency Research Report, 473 (2012)Google Scholar
  43. Stefanouli, M., Polyzos, S.: Gravity vs radiation model: two approaches on commuting in Greece. Transp. Res. Procedia 24, 65–72 (2017)CrossRefGoogle Scholar
  44. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)CrossRefGoogle Scholar
  45. Tang, L., Xiong, C., Zhang, L.: Spatial transferability of neural network models in travel demand modeling. J. Comput. Civ. Eng. 32(3), 04018010 (2018)CrossRefGoogle Scholar
  46. Tobler, W.R.: A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 46(sup1), 234–240 (1970)CrossRefGoogle Scholar
  47. Venkatraman, S., Yen, G.G.: A generic framework for constrained optimization using genetic algorithms. IEEE Trans. Evol. Comput. 9(4), 424–435 (2005)CrossRefGoogle Scholar
  48. Wikimedia Commons: File:Comunidades autónomas de España.svg — Wikimedia Commons, the free media repository. URL, [Online; Accessed 29 Nov 2018] (2017)
  49. Williams, I.: A comparison of some calibration techniques for doubly constrained models with an exponential cost function. Transp. Res. 10(2), 91–104 (1976)CrossRefGoogle Scholar
  50. Wilson, A.G.: A family of spatial interaction models, and associated developments. Environ. Plan. A 3(1), 1–32 (1971)CrossRefGoogle Scholar
  51. Wong, S.C., Wong, C., Tong, C.: A parallelized genetic algorithm for the calibration of lowry model. Parallel Comput. 27(12), 1523–1536 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Engineering DepartmentSt. Mary’s UniversitySan AntonioUSA
  2. 2.Grupo Ingeniería de Organización, Escuela Técnica Superior de IngenieríaUniversidad de SevillaSevilleSpain

Personalised recommendations