Advertisement

Using best–worst scaling to identify barriers to walkability: a study of Porto Alegre, Brazil

  • Ana Margarita Larranaga
  • Julián Arellana
  • Luis Ignacio Rizzi
  • Orlando Strambi
  • Helena Beatriz Bettella Cybis
Article

Abstract

This paper pursues three goals: (1) determining the relative importance of built environment barriers limiting walkability, (2) analyzing the existence of an asymmetry in the way people evaluate positive and negative built environment characteristics, and (3) identifying solutions to tackle the main barriers and quantify their impact in walkability. A best–worst scaling survey was developed to compare the importance of eight different attributes of the built environment regarding walkability. Model results show an asymmetry negative–positive in the judgment and choice of built environment characteristics that promote and impede walkability. The most important barriers, obtained from worst responses, are connectivity, topography, sidewalk surface and absence of policemen. Walkability scores were computed for different neighbourhoods and different policy scenarios were forecasted. Simulation results from the worst responses indicate that improvements in sidewalk quality, along with an increase in the number of police officers, lead to an 85% increase in the walkability score for the lower income neighbourhoods.

Keywords

Best–worst scaling Discrete choice modelling Walkability Built environment barriers 

Notes

Acknowledgements

The authors thank the CNPQ for the financial support provided from project 407630/2016-3. Luis Rizzi acknowledges financial support from Institute in Complex Engineering Systems (CONICYT: FBO816) and the Centre for Sustainable Urban Development, (CONICYT/FONDAP/15110020). The authors are indebted to the three referees for their comments that improved the substance and readability of the paper.

Authors’ contribution

AML: Literature Search, Experiment Design, Modelling, Policy Simulation, Manuscript Writing; JA: Experiment Design, Modelling, Policy Simulation, Manuscript Writing; LIR: Content planning, Modelling and Manuscript Writing; OS Manuscript Writing, Review and Editing; HC: Experiment Design, Content and data planning, Manuscript Writing and Editing.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary material

11116_2018_9944_MOESM1_ESM.jpg (1.5 mb)
Supplementary material 1 (JPEG 1551 kb)
11116_2018_9944_MOESM2_ESM.jpg (1.2 mb)
Supplementary material 2 (JPEG 1247 kb)
11116_2018_9944_MOESM3_ESM.jpg (2.1 mb)
Supplementary material 3 (JPEG 2159 kb)
11116_2018_9944_MOESM4_ESM.jpg (2.2 mb)
Supplementary material 4 (JPEG 2280 kb)
11116_2018_9944_MOESM5_ESM.jpg (2 mb)
Supplementary material 5 (JPEG 2024 kb)
11116_2018_9944_MOESM6_ESM.jpg (2.2 mb)
Supplementary material 6 (JPEG 2220 kb)
11116_2018_9944_MOESM7_ESM.jpg (2.2 mb)
Supplementary material 7 (JPEG 2265 kb)
11116_2018_9944_MOESM8_ESM.jpg (2.2 mb)
Supplementary material 8 (JPEG 2303 kb)

References

  1. Abele, A.: Thinking about thinking: causal, evaluative, and finalistic congnitions about social situations. Eur. J. Soc. Psychol. 15, 315–332 (1985)CrossRefGoogle Scholar
  2. Adachi-Mejia, A.M., Drake, K.M., MacKenzie, T.A., Titus-Ernstoff, L., Longacre, M.R., Hendricks, K.M., Beach, M.L., Dalton, M.A.: Perceived intrinsic barriers to physical activity among rural mothers. J. Womens Health 19, 2197–2202 (2010)CrossRefGoogle Scholar
  3. Adamsen, J.M., Whitty, J.A.: Best-Worst scaling reflections on presentation, analysis, and lessons learnt from case 3. Mark. Soc. Res 21(1), 9–27 (2013)Google Scholar
  4. Alfonzo, M.A.: To walk or not to walk? The hierarchy of walking needs. Environ. Behav. 37(6), 808–836 (2005).  https://doi.org/10.1177/0013916504274016 CrossRefGoogle Scholar
  5. Allen, G., Dempsey, N.: Police service strength. Briefing paper 634. London: House of Commons Library http://researchbriefings.files.parliament.uk/documents/SN00634/SN00634.pdf (2017). Accessed 1 June 2017
  6. Asadi-Shekari, Z., Moeinaddini, M., Shah, M.Z.: Non-motorised level of service: addressing challenges in pedestrian and bicycle level of service. Transp. Rev. 33(2), 166–194 (2013).  https://doi.org/10.1080/01441647.2013.775613 CrossRefGoogle Scholar
  7. Asadi-Shekari, Z., Moeinaddini, M., Shah, M.Z.: Pedestrian safety index for evaluating street facilities in urban areas. Saf. Sci. 74, 1–14 (2015)CrossRefGoogle Scholar
  8. Atlas for Human Development in Brazil: http://www.atlasbrasil.org.br/2013/pt/perfil_m/porto-alegre_rs (2013). Accessed 15 Sept 2018
  9. Badland, H.M., Opit, S., Witten, K., Kearns, R.A., Mavoa, S.: Can virtual streetscape audits reliably replace physical streetscape audits. J. Urban Health 87(6), 1007–1016 (2010).  https://doi.org/10.1007/s11524-010-9505-x CrossRefGoogle Scholar
  10. Badland, H., White, M., MacAulay, G., Eagleson, S., Mavoa, S., Pettit, C., Giles-Corti, B.: Using simple agent-based modeling to inform and enhance neighborhood walkability. Int. J. Health Geogr. 12, 10 (2013).  https://doi.org/10.1186/1476-072x-12-58 CrossRefGoogle Scholar
  11. Balbontin, C., de Ortúzar, J.D., Swait, J.: A joint best–worst scaling and stated choice model considering observed and unobserved heterogeneity: an application to residential location choice. J. Choice Modell. 16(c), 1–14 (2015)CrossRefGoogle Scholar
  12. Baran, P., Rodríguez, D., Khattak, A.: Space syntax and walking in a new urbanist and suburban neighborhoods. J. Urban Des. 13(1), 5–28 (2008)CrossRefGoogle Scholar
  13. Baumeister, R.F., Bratslavsky, E., Finkenauer, C., Vohs, K.D.: Bad is stronger than good. Rev. Gen. Psychol. 5, 323–370 (2001)CrossRefGoogle Scholar
  14. Beiler, M.R.O., Phillips, B.: Prioritizing pedestrian corridors using walkability performance metrics and decision analysis. J. Urban Plan. Dev. 142(1), 12 (2016).  https://doi.org/10.1061/(asce)up.1943-5444.0000290 CrossRefGoogle Scholar
  15. Ben-Akiva, M., Lerman, S.R.: Discrete Choice Analysis: Theory and Application to Travel Demand. MIT Press, Cambridge (1985)Google Scholar
  16. Blecic, I., Cecchini, A., Congiu, T., Fancello, G., Trunfio, G.A.: Evaluating walkability: a capability-wise planning and design support system. Int. J. Geogr. Inf. Sci. 29(8), 1350–1374 (2015).  https://doi.org/10.1080/13658816.2015.1026824 CrossRefGoogle Scholar
  17. Bostyn, D.H., Roets, A.: The morality of action: the asymmetry between judgments of praise and blame in the action–omission effect. J. Exp. Soc. Psychol. 63, 19–25 (2016)CrossRefGoogle Scholar
  18. Brebbia, C.A., Ricci, S.: Urban Transport XXIII. Wit Press, Southampton (2017)CrossRefGoogle Scholar
  19. Brownson, R.C., Hoehner, C.M., Day, K., Forsyth, A., Sallis, J.F.: Measuring the built environment for physical activity: state of the science. Am. J. Prev. Med. 36, S99-123.e12 (2009).  https://doi.org/10.1016/j.amepre.2009.01.005 CrossRefGoogle Scholar
  20. Burden, D.: Building communities with transportation. Transp. Res. Rec. 1773, 5–20 (2001)CrossRefGoogle Scholar
  21. Burge, P., Potoglou, D., Flynn, T., Brazier, J.E., Netten, A.: Bestworst scaling: Consistency of preferences with discrete choice experiments and stability over time. In: International Choice Modelling Conference, Leeds (2011)Google Scholar
  22. Burke, P.F, Louviere, J., Wei, E., MacAulay, G., Quail, K., Carson, R.: Overcoming Challenges and Improvements in Best-Worst Elicitation: Determining What Matters to Japanese Wheat Millers. Open Conference Systems. http://www.opus.lib.uts.edu.au (2013). Accessed 03 Feb 2015
  23. Cao, X., Handy, S., Mokhtarian, P.: The influences of the built environment and residential self-selection on pedestrian behavior, Tx. Transportation 33(1), 1–20 (2006)CrossRefGoogle Scholar
  24. Cao, X., Mokhtarian, P.L., Handy, S.L.: Examining the impacts of residential self-selection on travel behaviour: a focus on empirical findings. Transp. Rev. 29(3), 359–395 (2009).  https://doi.org/10.1080/01441640802539195 CrossRefGoogle Scholar
  25. Cerin, E., Saelens, B.E., Sallis, J.F., Frank, L.D.: Neighborhood environment walkability scale: validity and development of a short form. Med. Sci. Sports Exerc. 38(9), 1682–1691 (2006)CrossRefGoogle Scholar
  26. Cerin, E., Leslie, E., Owen, N.: Explaining socio-economic status differences in walking for transport: an ecological analysis of individual, social and environmental factors. Soc. Sci. Med. 68(6), 1013–1020 (2009).  https://doi.org/10.1016/j.socscimed.2009.01.008 CrossRefGoogle Scholar
  27. Cervero, R., Duncan, M.: Walking, bicycling, and urban landscapes: evidence from the San Francisco Bay Area. Am. J. Public Health 93(9), 1478–1483 (2003)CrossRefGoogle Scholar
  28. Cervero, R., Kockelman, K.: Travel demand and the 3Ds: density, diversity, and design. Transp. Res. D 2(3), 199–219 (1997)CrossRefGoogle Scholar
  29. Cervero, R., Sarmiento, O.L., Jacoby, E., Gomez, L.F., e Neiman, A.: Influences of built environments on walking and cycling: lessons from Bogotá. Int. J. Sustain. Transp. 3(4), 203–226 (2009)CrossRefGoogle Scholar
  30. Cheung, C.M.K., Lee, M.K.O.: Positive–negative asymmetry of disconfirmations on user satisfaction judgment. In: Pre-ICIS Workshop, IS-Core, LasVegas, NV, December. Vol. 11. https://pdfs.semanticscholar.org/84f5/6e50e66cf887e05cc62eb6e01416d4fdd247.pdf (2005). Accessed 25 June 2017
  31. Chiang, Y.-C., Lei, H.-Y.: Using expert decision-making to establish indicators of urban friendliness for walking environments: a multidisciplinary assessment. Int. J. Health Geogr. 15, 40 (2016)CrossRefGoogle Scholar
  32. Choice Metrics: Ngene 1.1 User Manual and Reference Guide. Choice Metrics. https://www.choice-metrics.com/documentation.html (2013). Accessed 10 Dec 2017
  33. Christopoulou, P., Pitsiava-Latinopoulou, M.: Development of a model for the estimation of pedestrian level of service in Greek urban areas. Procedia Soc. Behav. Sci. 48, 1691–1701 (2012)CrossRefGoogle Scholar
  34. Clark, A.F., Scott, D.M.: Article barriers to walking: an investigation of adults in Hamilton (Ontario, Canada). Int. J. Environ. Res. Public Health (2016).  https://doi.org/10.3390/ijerph13020179 CrossRefGoogle Scholar
  35. Clarke, P., Ailshire, J., Melendez, R., Bader, M.D.M., Morenoff, J.: Using google earth to conduct a neighborhood audit: reliability of a virtual audit instrument. Health Place 16(6), 1224–1229 (2010).  https://doi.org/10.1016/j.healthplace.20 CrossRefGoogle Scholar
  36. Coltman, T.R., Devinney, T.M., Keating, B.W.: Best–worst scaling approach to predict customer choice for 3PL services. J. Bus. Logist. 32(2), 139–152 (2011)CrossRefGoogle Scholar
  37. Criterion Planners Engineers: INDEX PlanBuilder Users Guide, Portland, OR (2001)Google Scholar
  38. Nationmaster: http://www.nationmaster.com/ (2017). Accessed 05 Mar 2017
  39. Craig, C.L., Brownson, R.C., Cragg, S.E., Dunn, A.L.: Exploring the effect of the environment on physical activity: a study examining walking to work. Am. J. Prev. Med. 23, 36–43 (2002)CrossRefGoogle Scholar
  40. Daly, A., Dekker, T., Hess, S.: Dummy coding versus effects coding for categorical variables: clarifications and extensions. J. Choice Modell. 21, 36–41 (2016)CrossRefGoogle Scholar
  41. Dandan, T.A.N., Wei, W., Jian, L.U., Yang, B.: Research on methods of assessing pedestrian level of service for sidewalk. J. Transp. Syst. Eng. Inf. Technol. 7(5), 74–79 (2007)Google Scholar
  42. Daniel, B.D., Nor, S.N.M., Rohani, M.M., Prasetijo, J., Aman, M.Y., Ambak, K.: Pedestrian Footpath Level of Service (FOOT-LOS) Model for Johor Bahru (2016)Google Scholar
  43. Department of Public Safety: Indicadores Criminais. http://www.ssp.rs.gov.br/indicadores-criminais (2018). Accessed 15 Sept 2018
  44. Dias, J.A., Dias, J.G., Lages, C.: Can negative characters in soap operas be positive for product placement? J. Bus. Res. 71, 125–132 (2017)CrossRefGoogle Scholar
  45. Diener, E., Larsen, R.J., Levine, S., Emmons, R.A.: Intensity and frequency: dimensions underlying positive and negative affect. J. Pers. Soc. Psychol. 48, 1253–1265 (1985)CrossRefGoogle Scholar
  46. Dill, J.: Measuring network connectivity for bicycling and walking. In: Transport Research Board Annual Meeting. Washington DC: Transportation Research Board 2004 (CD-ROM) http://reconnectingamerica.org/assets/Uploads/TRB2004-001550.pdf (2004)
  47. Dixon, L.: Bicycle and pedestrian level-of-service performance measures and standards for congestion management systems. Transp. Res. Rec. J. Transp. Res. Board 1538, 1–9 (1996)CrossRefGoogle Scholar
  48. Dobesova, Z., Krivka, T.: Walkability Index in the Urban Planning: A Case Study in Olomouc City. INTECH Open Access Publisher, Rijeka (2012)Google Scholar
  49. Dowling, R., Flannery, A., Landis, B., Petritsch, T., Rouphail, N., Ryus, P.: Multimodal level of service for urban streets. Transp. Res. Rec. 2071, 1–7 (2008).  https://doi.org/10.3141/2071-01 CrossRefGoogle Scholar
  50. Elias, A.: Automobile-oriented or complete street? pedestrian and bicycle level of service in the new multimodal paradigm. Transp. Res. Rec. 2257, 80–86 (2011).  https://doi.org/10.3141/2257-09 CrossRefGoogle Scholar
  51. Ellis, G., Hunter, R., Tully, M.A., Donnelly, M., Kelleher, L., Kee, F.: Connectivity and physical activity: using footpath networks to measure the walkability of built environments. Environ. Plan. B Plan. Des. 43(1), 130–151 (2016).  https://doi.org/10.1177/0265813515610672 CrossRefGoogle Scholar
  52. Emery, J., Crump, C., Bors, P.: Reliability and validity of two instruments designed to assess the walking and bicycling suitability of sidewalks and roads. Am. J. Health Promot. 18(1), 38–46 (2003)CrossRefGoogle Scholar
  53. Ewing, R., Cervero, R.: Travel and the built environment—a meta-analysis. J. Am. Plan. Assoc. 76, 265–294 (2010)CrossRefGoogle Scholar
  54. Ewing, R., Handy, S.: Measuring the unmeasurable: urban design qualities related to walkability. J. Urban Des. 14(1), 65–84 (2009).  https://doi.org/10.1080/13574800802451155 CrossRefGoogle Scholar
  55. Feldman, G., Wong, K.F.E., Baumeister, R.F.: Bad is freer than good: positive–negative asymmetry in attributions of free will. Conscious. Cogn. 42, 26–40 (2016)CrossRefGoogle Scholar
  56. Flynn, T.N.: Valuing citizen and patient preferences in health: recent developments in three types of best–worst scaling. Expert Rev. Pharmacoecon. Outcomes Res. 10(3), 259–267 (2010a).  https://doi.org/10.1586/erp.10.29 CrossRefGoogle Scholar
  57. Flynn, T.N.: Using conjoint analysis and choice experiments to estimate quality adjusted life year values: issues to consider. Pharmacoeconomics 28, 711–722 (2010b)CrossRefGoogle Scholar
  58. Forsyth, A., Hearst, M., Oakes, J.M., Schmitz, K.H.: Design and destinations: factors influencing walking and total physical activity. Urb. Stud. 45(9), 1973–1996 (2008).  https://doi.org/10.1177/0042098008093386 CrossRefGoogle Scholar
  59. Foster, S., Giles-Corti, B.: The built environment, neighborhood crime and constrained physical activity: an exploration of inconsistent findings. Prev. Med. 47(3), 241–251 (2012)CrossRefGoogle Scholar
  60. Frackelton, A., Grossman, A., Palinginis, E., Castrillon, F., Elango, V., Guensler, R.: Measuring walkability: development of an automated sidewalk quality assessment tool. Suburban Sustain. 1(1), 4 (2013)CrossRefGoogle Scholar
  61. Frank, L., Engelke, P.: The built environment and human activity patterns: exploring the impacts of urban for mon public health. J. Plan. Lit. 16, 202–218 (2001)CrossRefGoogle Scholar
  62. Frank, L.D., Schmid, T.L., Sallis, J.F., Chapman, J., Saelens, B.E.: Linking objectively measured physical activity with objectively measured urban form—Findings from SMARTRAQ. Am. J. Prev. Med. 28(2), 117–125 (2005).  https://doi.org/10.1016/j.amepre.2004.11.001 CrossRefGoogle Scholar
  63. Frank, L.D., Sallis, J.F., Conway, T.L., Chapman, J.E., Saelens, B.E., Bachman, W.: Many pathways from land use to health—associations between neighborhood walkability and active transportation, body mass index, and air quality. J. Am. Plan. Assoc. 72(1), 75–87 (2006).  https://doi.org/10.1080/01944360608976725 CrossRefGoogle Scholar
  64. Frank, L., Kerr, J., Chapman, J., Sallis, J.: Urban form relationships with walk trip frequency and distance among youth. Am. J. Health Promot. AJHP 21(4), 305–311 (2007).  https://doi.org/10.4278/0890-1171-21.4s.305 CrossRefGoogle Scholar
  65. Gallin, N.: Quantifying pedestrian friendliness–guidelines for assessing pedestrian level of service. Road Transp. Res. 10(1), 47 (2001)Google Scholar
  66. Giles-Corti, B., Donovan, R.J.: Socioeconomic status differences in recreational physical activity levels and real and perceived access to a supportive physical environment. Prev. Med. 35, 601–611 (2002)CrossRefGoogle Scholar
  67. Glazier, R.H., Weyman, J.T., Creatore, M.I., Gozdyra, P., Moineddin, R., Matheson, F.I., Booth, G.L.: Development and validation of an urban walkability index for Toronto, Canada. Can. J. Diabetes 32(4) (2008)Google Scholar
  68. Google Maps: Map of Porto Alegre. Google. https://www.google.com.br/maps/@-30.0415024,-51.2212028,13z (2017). Accessed 01 Mar 2017
  69. Gori, S., Nigro, M., Petrelli, M.: Walkability indicators for pedestrian-friendly design. Transp. Res. Rec. (2464), 38–45. (2014).  https://doi.org/10.3141/2464-05 CrossRefGoogle Scholar
  70. Graziano, W.G., Brothen, T., Berscheid, E.: Attention, attraction, and individual differences in reaction to criticism. J. Pers. Soc. Psychol. 38, 193–202 (1980)CrossRefGoogle Scholar
  71. Greenwald, M.J., Boarnet, M.G.: Built environment as determinant of walking behavior: analyzing nonwork pedestrian travel in Portland Oregon. Transp. Res. Rec. J. Transp. Res. Board 1780(1), 33–41 (2001).  https://doi.org/10.3141/1780-05 CrossRefGoogle Scholar
  72. Griew, P., Hillsdon, M., Foster, C., Coombes, E., Jones, A., Wilkinson, P.: Developing and testing a street audit tool using Google Street View to measure environmental supportiveness for physical activity. Int. J. Behav. Nutr. Phys. Act. 10, 110 (2013)CrossRefGoogle Scholar
  73. Gullón, P., Badland, H., Alfayate, S., Bilal, U., Escobar, F., Cebrecos, A., et al.: Assessing walking and cycling environments in the streets of Madrid: comparing on-field and virtual audits. J. Urban Health 92(5), 923–939 (2015)CrossRefGoogle Scholar
  74. Guttenplan, M., Davis, B., Steiner, R., Miller, D., Trb: Planning-level areawide multimodal level-of-service analysis—performance measures for congestion management. Transp. Plan. Anal. Plan. Admin. (1858), 61–68 (2003)Google Scholar
  75. Guttenplan, M., Landis, B. W., Crider, L., McLeod, D. S., & Trb. (2001). Multimodal level-of-service analysis at planning level. Traffic Flow Theory Highw. Capacit. Highw. Oper. Capacit. Traffic Control (1776), 151–158CrossRefGoogle Scholar
  76. Ha, E., Joo, Y., Jun, C.: An empirical study on sustainable walkability indices for transit-oriented development by using the analytic network process approach. Int. J. Urban Sci. 15(2), 137–146 (2011)CrossRefGoogle Scholar
  77. Hall, R.A.: HPE’s Walkability index–quantifying the pedestrian experience. In: Transport Research Board Annual Meeting. Transportation Research Board 210(CD-ROM), Washington DC (2010)Google Scholar
  78. Hamilton, D.L., Zanna, M.P.: Differential weighting of favorable and unfavorable attributes in impressions of personality. J. Exp. Res. Personal. 6, 204–212 (1972)Google Scholar
  79. Handy, S.L., Clifton, K.J.: Local shopping as a strategy for reducing automobile travel. Transportation 28, 317–346 (2001)CrossRefGoogle Scholar
  80. Herr, P.M., Page, C.M., Pfeiffer, B.E., Davis, D.F.: Affective influences on evaluative processing. J. Consum. Res. 38, 833–845 (2012)CrossRefGoogle Scholar
  81. Herrmann, B., Ross, E.-G.: In: Transportation Research Board 96th Annual 35 Meeting in Washington, DC, TRB 2017 Annual MeetingGoogle Scholar
  82. Hoehner, C.M., Ramirez, L.K.B., Elliott, M.B., Handy, S.L., Brownson, R.C.: Perceived and objective environmental measures and physical activity among urban adults. Am. J. Prev. Med. 28(2), 105–116 (2005).  https://doi.org/10.1016/j.amepre.2004.10.023 CrossRefGoogle Scholar
  83. Hong, J., Chen, C.: The role of the built environment on perceived safety from crime and walking: examining direct and indirect impacts. Transportation 41, 1171 (2014).  https://doi.org/10.1007/s11116-014-9535-4 CrossRefGoogle Scholar
  84. Hsee, C.K., Rottenstreich, Y., Tang, J.: Asymmetries between positives and negatives. Soc. Pers. Psychol. Compass 8, 699–707 (2014)CrossRefGoogle Scholar
  85. Iachan, R.: Systematic sampling: a critical review. Int. Stat. Rev. Revue Internationale De Statistique 50(3), 293–303 (1982).  https://doi.org/10.2307/1402499 CrossRefGoogle Scholar
  86. Iacono, M., Krizek, K.J., El-Geneidy, A.: Measuring non-motorized accessibility: issues, alternatives, and execution. J. Transp. Geogr. 18(1), 133–140 (2010).  https://doi.org/10.1016/j.jtrangeo.2009.02.002 CrossRefGoogle Scholar
  87. IBGE (Brazilian National Census): http://www.censo2010.ibge.gov.br/en/ (2010)
  88. Ikegami, T.: Positive-negative asymmetry of priming effects on impression formation. Eur. J. Soc. Psychol. 23, 1–16 (1993)CrossRefGoogle Scholar
  89. Jaskiewicz, F.: Pedestrian level of service based on trip quality. Transportation Research Circular, TRB (2000)Google Scholar
  90. Jensen, S.U.: Pedestrian and bicyclist level of service on roadway segments. Transp. Res. Rec. (2031), 43–51 (2007).  https://doi.org/10.3141/2031-06 CrossRefGoogle Scholar
  91. Kahneman, D., Tversky, A.: Prospect theory: an analysis of decision under risk. Econometrica 47(2), 263–291 (1979)CrossRefGoogle Scholar
  92. Kamargianni, M., Polydoropoulou, A., Goulias, K.G.: Teenager’s travel patterns for school and after-school activities. Procedia Soc. Behav. Sci. 48, 3635–3650 (2013)CrossRefGoogle Scholar
  93. Kaparias, I., Bell, M.G.H., Miri, A., Chan, C., Mount, B.: Analysing the perceptions of pedestrians and drivers to shared space. Transp. Res. Part F Traffic Psychol. Behav. 15(3), 297–310 (2012)CrossRefGoogle Scholar
  94. Kelly, C.E., Tight, M.R., Hodgson, F.C., Page, M.W.: A comparison of three methods for assessing the walkability of the pedestrian environment. J. Transp. Geogr. 19(6), 1500–1508 (2011).  https://doi.org/10.1016/j.jtrangeo.2010.08.001 CrossRefGoogle Scholar
  95. Khan, M., Kockelman, K.M., Xiong, X.: Models for anticipating non-motorized travel choices, and the role of the built environment. Transp. Policy 35, 117–126 (2014).  https://doi.org/10.1016/j.tranpol.2014.05.008 CrossRefGoogle Scholar
  96. Kim, T.-H., Park, J.-t., Lim, J.-h., Joo, Y.: A development of integrated evaluation criteria for quality of service on pedestrian networks by using multi-criteria decision analysis (2009).  https://doi.org/10.22260/ISARC2011/0112
  97. Kim, S., Choi, J., Kim, S.: Roadside walking environments and major factors affecting pedestrian level of service. Int. J. Urban Sci. 17(3), 304–315 (2013)CrossRefGoogle Scholar
  98. Kim, S., Park, S., Lee, J.S.: Meso-or micro-scale? Environmental factors influencing pedestrian satisfaction. Transp. Res. Part D: Transp. Environ. 30, 10–20 (2014)CrossRefGoogle Scholar
  99. Klinger, E., Barta, S.G., Maxeiner, M.E.: Motivational correlates of thought content frequency and commitment. J. Pers. Soc. Psychol. 39, 1222–1237 (1980)CrossRefGoogle Scholar
  100. Koh, P.P., Wong, Y.D.: Influence of infrastructural compatibility factors on walking and cycling route choices. J. Environ. Psychol. 36, 202–213 (2013)CrossRefGoogle Scholar
  101. Krambeck, H.V.: The Global Walkability Index. Department of urban and planning and department of civil and environmental engineering, Massachusetts Institute of Technology. http://dspace.mit.edu/handle/1721.1/34409 (2006). Accessed 5 Nov 2017
  102. Kubat, A.S., Ozer, O., Ozbil, A.: Defining a strategical framework for urban pedestrianization projects. https://faculty.ozyegin.edu.tr/ayseo/files/2014/02/SSS9_2013.pdf (2013). Accessed Sept 2018
  103. Lamíquiz, P.J., López-Domínguez, J.: Effects of built environment on walking at the neighbourhood scale. A new role for street networks by modelling their configurational accessibility? Transp. Res. Part A Policy Pract. 74, 148–163 (2015)CrossRefGoogle Scholar
  104. Lancsar, E., Louviere, J., Flynn, T.: Several methods to investigate relative attribute impact in stated preference experiments. Soc. Sci. Med. 64(8), 1738–1753 (2007)CrossRefGoogle Scholar
  105. Landis, B.W., Vattikuti, V.R., Ottenberg, R.M., McLeod, D.S., Guttenplan, M., Trb: Modeling the roadside walking environment—pedestrian level of service. In: 2001 Trb Distinguished Lecture, Pt 1—Bicycle and Pedestrian Research, Pt 2: Safety and Human Performance, pp. 82–88. Washington: Transportation Research Board Natl Research Council (2001)Google Scholar
  106. Larranaga, A.M., Cybis, H.B.: The relationship between built environment and walking for different trip purposes in Porto Alegre, Brazil. Int. J. Sustain. Dev. Plan. Encourag. Unified Approach Achiev. Sustain. 9, 568–580 (2014).  https://doi.org/10.2495/SDP-V9-N4-568-580 CrossRefGoogle Scholar
  107. Larranaga, A.M., Rizzi, L.I., Arellana, J., Strambi, O., Cybis, H.B.: The Influence of built environment and travel attitudes on walking: a case study of Porto Alegre, Brazil. Int. J. Sustain. Transp. 28, 1–5 (2014).  https://doi.org/10.1080/15568318.2014.933986 CrossRefGoogle Scholar
  108. Lee, C., Moudon, A.V.: Correlates of walking for transportation or recreation purposes. J. Phys. Act. Health 3(1), 77–98 (2006)CrossRefGoogle Scholar
  109. Lee, J.A., Soutar, G., Louviere, J.: The best–worst scaling approach: an alternative to Schwartz’s values survey. J. Pers. Assess. 90(4), 335–347 (2008)CrossRefGoogle Scholar
  110. Lee, S., Lee, S., Son, H., Joo, Y.: A new approach for the evaluation of the walking environment. Int. J. Sustain. Transp. 7(3), 238–260 (2013)CrossRefGoogle Scholar
  111. Leslie, E.S., Brian, S., Frank, L., Owen, N., Bauman, A., Coffee, N., Hugo, G.: Residents’ perceptions of walkability attributes in objectively different neighbourhoods: a pilot study. Health Place 11(3), 227–236 (2005)CrossRefGoogle Scholar
  112. Leslie, E., Coffee, N., Frank, L., Owen, N., Bauman, A., Hugo, G.: Walkability of local communities: using geographic information systems to objectively assess relevant environmental attributes. Health Place 13(1), 111–122 (2007).  https://doi.org/10.1016/j.healthplace.2005.11.001 CrossRefGoogle Scholar
  113. Lindelöw, D., Svensson, Å., Brundell-Freij, K., Hiselius, L.W.: Satisfaction or compensation? The interaction between walking preferences and neighbourhood design. Transp. Res. Part D 50, 520–532 (2017)CrossRefGoogle Scholar
  114. Litman, T.: Integrating public health objectives in transportation decision- making. Am. J. Health Promot. 18(n.1), 103–108 (2003)CrossRefGoogle Scholar
  115. Loo, B.P.Y., Lam, W.W.Y.: Geographic accessibility around health care facilities for elderly residents in Hong Kong: a microscale walkability assessment. Environ. Plan. B Plan. Des. 39(4), 629–646 (2012).  https://doi.org/10.1068/b36146 CrossRefGoogle Scholar
  116. Loukaitou-Sideris, A.: Is it safe to walk? Neighborhood safety and security considerations and their effects on walking. J. Plan. Lit. 20(3), 219–232 (2006).  https://doi.org/10.1177/0885412205282770 CrossRefGoogle Scholar
  117. Louviere, J.J., Islam, T.: A Comparison of importance weights/measures derived from choice-based conjoint, constant sum scales and best worst scaling. J. Bus. Res. 61, 903–911 (2008)CrossRefGoogle Scholar
  118. Louviere, J., Swait, J.D.: Separating weights and scale values in conjoint tasks using choices of best and worst attribute levels. Working Paper, Centre for the Study of Choice, University of Technology Sydney (1997)Google Scholar
  119. Louviere, J.: Analyzing Decision Making: Metric Conjoint Analysis (Quantitative Applications in the Social Sciences). SAGE Publications, Inc; 1 edition (1988)Google Scholar
  120. Lovasi, G.S., Schwartz-Soicher, O., Quinn, J.W., Berger, D.K., Nickerman, K.M., Jaslow, R., Lee, K.K., Rundle, A.: Neighborhood safety and green space as predictors of obesity among preschool children from low-income families in New York City. Prevent. Med. 57(3), 189–193 (2013)CrossRefGoogle Scholar
  121. Ma, L., Mulley, C., Liu, W.: Social marketing and the built environment: what matters for travel behaviour change? Transportation 44(5), 1147–1167 (2017).  https://doi.org/10.1007/s11116-016-9698-2 CrossRefGoogle Scholar
  122. Mantri, A.: A GIS based approach to measure walkability of a neighborhood. University of Cincinnati (2008)Google Scholar
  123. Marley, A.A., Louviere, J.: Some probabilistic models of best, worst, and best–worst choices. J. Math. Psychol. 49, 464–480 (2005)CrossRefGoogle Scholar
  124. Matley, T., Goldman, L., Fineman, B.: Pedestrian travel potential in Northern New Jersey: a metropolitan planning organization’s approach to identifying investment priorities. Transp. Res. Rec. J. Transp. Res. Board 1705, 1–8 (2000)CrossRefGoogle Scholar
  125. Mehta, V.: Walkable streets: pedestrian behavior, perceptions and attitudes. J. Urban. 1(3), 217–245 (2008)Google Scholar
  126. Middleton, J.: ‘Stepping in Time’: walking, time, and space in the city. Environ. Plan. A 41(8), 1943–1961 (2009)CrossRefGoogle Scholar
  127. Moudon, A.V., Lee, C., Cheadle, A.D., Garvin, C., Johnson, D., Schmid, T.L., et al.: Operational definitions of walkable neighborhood: theoretical and empirical insights. J. Phys. Act. Health 3, S99 (2006)CrossRefGoogle Scholar
  128. Moura, F., Cambra, P., Gonçalves, A.B.: Measuring walkability for distinct pedestrian groups with a participatory assessment method: a case study in Lisbon. Landsc. Urban Plan. 157, 282–296.e (2017)CrossRefGoogle Scholar
  129. Muraleetharan, T., Adachi, T., Hagiwara, T., Kagaya, S.: Method to determine overall level-of service of pedestrian walkways based on total utility value. J. Infrastruct. Plann. Manage. Japan Soc. Civ. Eng. (JSCE). 22, 685–693 (2004)Google Scholar
  130. Muraleetharan, T., Hagiwara, T.: Overall level of service of urban walking environment and its influence on pedestrian route choice behavior: analysis of pedestrian travel in Sapporo, Japan. Transp. Res. Rec. J. Transp. Res. Board (2007)Google Scholar
  131. Park, S., Deakin, E., Lee, J.S.: Perception-based walkability index to test impact of micro level walkability on sustainable mode choice decisions. Transp. Res. Rec. (2464), 126–134 (2014).  https://doi.org/10.3141/2464-16 CrossRefGoogle Scholar
  132. Park, S.: Defining, measuring, and evaluating path walkability, and testing its impacts on transit users’ mode choice and walking distance to the station. ProQuest (2008)Google Scholar
  133. Peiravian, F., Derrible, S., Ijaz, F.: Development and application of the Pedestrian Environment Index (PEI). J. Transp. Geogr. 39, 73–84 (2014)CrossRefGoogle Scholar
  134. Pikora, T.J., Giles-Corti, B., Bull, F.C.L., Jamrozik, K., Donovan, R.J.: Developing a framework for assessment of the environmental determinants of walking and cycling. Soc. Sci. Med. 56(8), 1693–1703 (2003)CrossRefGoogle Scholar
  135. Pratto, F., John, O.P.: Automatic vigilance: the attention-grabbing power of negative social information. J. Pers. Soc. Psychol. 61, 380–391 (1991)CrossRefGoogle Scholar
  136. Ramezani, S., Pizzo, B., Deakin, E.: An integrated assessment of factors affecting modal choice: towards a better understanding of the causal effects of built environment. Transportation 1–37 (2017).  https://doi.org/10.1007/s11116-017-9767-1 CrossRefGoogle Scholar
  137. Rietveld, P.: Biking and walking: the position of non-motorized transport modes in transport systems. In: Kenneth, B., David, H. (eds.) Handbook of transport systems and traffic control, pp. 299–320. Elsevier Science Ltd., Oxford (2001)CrossRefGoogle Scholar
  138. Rodriguez, D., Joo, J.: The relationship between non-motorized mode choice and the local physical environment. Transp. Res. Part D Transp. Environ. 9(2), 151–173 (2004)CrossRefGoogle Scholar
  139. Rose, J.M., Bliemer, M.C.: Constructing efficient stated choice experimental designs. Transp. Rev. 5(n.29), 587–617 (2009)CrossRefGoogle Scholar
  140. Ruiz-Padillo, A., Pasqual, F.M., Larranaga Uriarte, A.M., Cybis, H.B.: Application of multi-criteria decision analysis methods for assessing walkability: a case study in Porto Alegre Brazil. Transp. Res. Part D Transp. Environ. 63, 855–871 (2018).  https://doi.org/10.1016/j.trd.2018.07.016 CrossRefGoogle Scholar
  141. Rundle, A., Bader, M.D.M., Richards, C.A., Neckerman, K.M., Teitler, J.O.: Using google street view to audit neighborhood environments. Am. J. Prev. Med. 40(1), 94–100 (2011).  https://doi.org/10.1016/j.amepre.20 CrossRefGoogle Scholar
  142. Rutland, A., Brown, R.J., Cameron, L., Ahmavaara, A., Arnold, K., Samson, J.: Development of the positive-negative asymmetry effect: in-group exclusion norm as a mediator of children’s evaluations on negative attributes. Eur. J. Soc. Psychol. 37, 171–190 (2007)CrossRefGoogle Scholar
  143. Saelens, B.E., Sallis, J.F., Frank, L.D.: Environmental correlates of walking and cycling: findings from the transportation, urban design, and planning literatures. Ann. Behav. Med. (2003).  https://doi.org/10.1207/S15324796ABM2502_03 CrossRefGoogle Scholar
  144. Saelens, B.E., Handy, S.: Built environment correlates of walking: a review. Med. Sci. Sports Exerc. 40(S), 550–567 (2008)CrossRefGoogle Scholar
  145. Sawtooth Software: The CBC system for choice-based conjoint analysis: Version 8.0. Technical Paper. Orem, Utah USA https://www.sawtoothsoftware.com/download/techpap/cbctech.pdf (2013). Accessed 05 Mar 2017
  146. Sayyadi, G., Awasthi, A.: AHP-based approach for location planning of pedestrian zones: application in Montreal, Canada. J. Transp. Eng. Asce 139(2), 239–246 (2013).  https://doi.org/10.1061/(asce)te.1943-5436.0000493 CrossRefGoogle Scholar
  147. Secretariat of Urban Mobility of Porto Alegre: Origin and destination survey of Porto Alegre: EDOM 2003 (Technical Report). Porto Alegre. http://lproweb.procempa.com.br/pmpa/prefpoa/eptc/usu_doc/relatorio_edom_2003.pdf (2004). Accessed 3 Apr 2016
  148. Sehatzadeh, B., Noland, R.B., Weiner, M.D.: Walking frequency, cars, dogs, and the built environment. Transp. Res. Part A 45, 741–754 (2011)Google Scholar
  149. Sharma, V., Al-Hussein, M., Safouhi, H., Boufergubene, A.: Municipal infrastructure asset levels of service assessment for investment decisions using analytic hierarchy process. J. Infrastr. Syst. 14(3), 193–200 (2008).  https://doi.org/10.1061/(asce)1076-0342(2008)14:3(193) CrossRefGoogle Scholar
  150. Shatu, F., Yigitcanlar, T.: Development and validity of a virtual street walkability audit tool for pedestrian route choice analysis—SWATCH. J. Transp. Geogr. 70, 148–160 (2018).  https://doi.org/10.1016/j.jtrangeo.2018.06.004 CrossRefGoogle Scholar
  151. Shriver, K.: Influence of environmental design on pedestrian travel behavior in four austin neighborhoods. Transp. Res. Rec. 1578. http://www.enhancements.org/download/trb/1578-09.PDF (1997). Accessed 21 Nov 2017
  152. Singleton, P.A., Wang, L.: Safety and security in discretionary travel decision making: focus on active travel mode and destination choice. Transp. Res. Rec. J. Transp. Res. Board 2430, 47–58 (2014).  https://doi.org/10.3141/2430-06 CrossRefGoogle Scholar
  153. Skowronski, J.J., Carlston, D.E.: Caught in the act: when impressions based on highly diagnostic behaviors are resistant to contradiction. Eur. J. Soc. Psychol 22, 435–452 (1992)CrossRefGoogle Scholar
  154. Spinney, J., Millward, H.: Time and money: a new look at poverty and the barriers to physical activity in Canada. Soc. Indic. Res. 99, 341–356 (2010)CrossRefGoogle Scholar
  155. Stantec: Proposed walkability strategy for Edmonton. Stantec Consulting Ltda. Glatting Jackson Kercher Anglin, Inc. Project for Public Spaces (2010)Google Scholar
  156. Sung, H., Lee, S.: Residential built environment and walking activity: empirical evidence of Jane Jacobs’ urban vitality. Transp. Res. Part D Transp. Environ. 41, 318–329 (2015)CrossRefGoogle Scholar
  157. Swait, J.D., Louviere, J.: The role of the scale parameter in the estimation and comparison of multinomial logit models. J. Mark. Res. 30, 305–314 (1993)CrossRefGoogle Scholar
  158. Swords, A., Goldman, L., Feldman, W., Ehrlich, T., Bird Jr., W.: Analytical framework for prioritizing bicycle and pedestrian investments: new Jersey’s statewide master plan update, phase 2. Transp. Res. Record J. Transp. Res. Board 1878, 27–35 (2004)CrossRefGoogle Scholar
  159. Tal, G., Handy, S.: Measuring nonmotorized accessibility and connectivity in a robust pedestrian network. Transp. Res. Rec. J. Transp. Res. Board (2299), 48–56 (2012)CrossRefGoogle Scholar
  160. Talavera-Garcia, R., Soria-Lara, J.A.: Q-PLOS, developing an alternative walking index. A method based on urban design quality. Cities 45, 7–17 (2015)CrossRefGoogle Scholar
  161. Taylor, S.E.: Asymmetrical effects of positive and negative events: the mobilization-minimization hypothesis. Psychologist 38, 1161–1173 (1991)CrossRefGoogle Scholar
  162. Tian, G., Ewing, E.: A walk trip generation model for Portland, OR. Transp. Res. Part D. 1361–9209 (2017). http://dx.doi.org/10.1016/j.trd.2017.03.017
  163. Tribby, C.P., Miller, H.J., Brown, B.B., Werner, C.M., Smith, K.R.: Assessing built environment walkability using activity-space summary measures. J. Transp. Land Use 9(1), 187–207 (2016)Google Scholar
  164. Tversky, A., Kahneman, D.: Advances in prospect theory: cumulative representation of uncertainty. J. Risk Uncertain. 5, 297–323 (1992)CrossRefGoogle Scholar
  165. U.S. Environmental Protection Agency: About Smart Growth. U.S. Environmental Protection Agency. http://www.epa.gov/smartgrowth/about_sg.htm (2008). Accessed 12 April 2017
  166. Vale, D.S., Saraiva, M., Pereira, M.: Active accessibility: a review of operational measures of walking and cycling accessibility. J. Transp. Land Use 9(1), 209–235 (2016)Google Scholar
  167. Van Dyck, D., Cardon, G., Deforche, B., Sallis, J.F., Owen, N., De Bourdeaudhuij, I.: Neighborhood SES and walkability are related to physical activity behavior in Belgian adults. Prev. Med. 50(suppl 1), S74–S79 (2010)CrossRefGoogle Scholar
  168. Vargo, J., Stone, B., Glanz, K.: Google walkability: a new tool for local planning and public health research? J. Phys. Act. Health 9(5), 689–697 (2012)CrossRefGoogle Scholar
  169. Wang, Y., Chau, C.K.A., Ng, W.Y., Leung, T.M.: A review on the effects of physical built environment attributes on enhancing walking and cycling activity levels within residential neighborhoods. Cities 50(1), 1–15 (2016).  https://doi.org/10.1016/j.cities.2015.08.004 CrossRefGoogle Scholar
  170. Weinstein Agrawal, A., Schlossberg, M., Irvin, K.: How far, by which route and why? A spatial analysis of pedestrian preference. J. Urban Des. (2008).  https://doi.org/10.1080/13574800701804074 CrossRefGoogle Scholar
  171. Wells, N.M., Yang, Y.: Neighborhood design and walking: aquasi-experimental longitudinal study. Am. J. Prev. Med. 34(4), 313–319 (2008).  https://doi.org/10.1016/j.amepre.2008.01.019 CrossRefGoogle Scholar
  172. Wey, W.M., Chiu, Y.H.: Assessing the walkability of pedestrian environment under the transit-oriented development. Habitat Int. 38, 106–118 (2013).  https://doi.org/10.1016/j.habitatint.2012.05.004 CrossRefGoogle Scholar
  173. Woldeamanuel, M., Kent, A.: Measuring walk access to transit in terms of sidewalk availability, quality, and connectivity. J. Urban Plan. Dev. 142(2), 04015019 (2015)CrossRefGoogle Scholar
  174. Yin, L.: Assessing walkability in the city of buffalo: application of agent-based simulation. J. Urban Plan. Dev. 139(3), 166–175 (2013).  https://doi.org/10.1061/(asce)up.1943-5444.0000147 CrossRefGoogle Scholar
  175. Zegras, C.: The built environment and motor vehicle ownership and use: evidence from Santiago de Chile. Urban Stud. 47(8), 1793–1817 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Ingeniería Civil y AmbientalUniversidad del NorteBarranquillaColombia
  2. 2.Departamento de Ingeniería de Transporte y LogísticaPontificia Universidad Católica de ChileSantiagoChile
  3. 3.Transportation Engineering DepartmentUniversity of São Paulo-Escola PolitécnicaSão PauloBrazil
  4. 4.Industrial and Transportation Engineering DepartmentFederal University of Rio Grande do SulPorto AlegreBrazil

Personalised recommendations