Advertisement

Disaster management using free space optical communication system

  • Jeyarani JeyaseelanEmail author
  • D. Sriram Kumar
  • B. E. Caroline
Original Paper
  • 16 Downloads

Abstract

A novel method for disaster management using free space optical link is proposed in this paper. Free space optics recently gained great attention since it has advantages over RF communication such as high bandwidth, license free spectrum and highly secured transmission. Besides all these, FSO faces challenges during transmission due to atmospheric turbulence-induced fading. Diversity techniques are used in this paper to mitigate the fading effects. The capacity of multiple input multiple output (MIMO) free space optical (FSO) networks is increased using polarization division multiplexing (PDM). This paper proposed a novel method of MISO and MIMO-OFDM which uses both odd and even subcarriers to improve the transmission capacity. The separated OFDM subcarriers are combined using PDM, which supports two independent data channels on a single wavelength with orthogonal polarization states. The system performance is evaluated under various atmospheric turbulence conditions. This paper introduces a novel application of MIMO-FSO system during disaster scenario. The atmosphere is considered to be turbulent in nature, and Malaga model is used to characterize the channel. The closed-form expressions for MIMO-FSO are derived, and the graphs for the performance under different turbulent conditions are plotted.

Keywords

Polarization division multiplexing (PDM) Free space optical networks (FSO) Optical orthogonal frequency division multiplexing (OFDM) Malaga channel model Ergodic capacity Multiple input multiple output (MISO) 

Notes

References

  1. 1.
    Smith, A.: Wireless Communications. Cambridge University Press, Cambridge (2005)Google Scholar
  2. 2.
    Muller, R.R., Mello, D.A.D.A.: Phase-offset estimation for joint-polarization phase-recovery in DP-16-QAM systems. IEEE Photon. Technol. Lett. 22(20), 1515–1517 (2010)CrossRefGoogle Scholar
  3. 3.
    Jiang-Xing, Q., Li-Xia, X., Xiao-Guang, Z., et al.: Polarization mode dispersion compensation in a novel dual polarization differential quadrature phase shift keying system. Chin. Phys. B 20(11), 114201 (2011)CrossRefGoogle Scholar
  4. 4.
    Li, Z.Q., et.al.: Comprehensive study of optical, physical, chemical, and radiative properties of total columnar atmospheric aerosols over China: An overview of Sun–Sky Radiometer Observation Network (SONET) measurements. Bull. Amer. Meteor. Soc. 99, 739–755 (2013)CrossRefGoogle Scholar
  5. 5.
    Yu, B., Jia, W., Zhou, C., Cao, H., Sun, W.: Grating imaging scanning lithography. Chin. Opt. Lett. 11, 080501 (2013)CrossRefGoogle Scholar
  6. 6.
    Yang, Y.F., Cheng, L.H., Li, Z.H., Lu, C., Xiong, Q.J., Xu, X.G., Liu, L., Tam, H.Y., Wai, P.K.A.: European Conference on Optical Communication (ECOC) Vienna, Austria, Paper p. 3.19 (2009)Google Scholar
  7. 7.
    Koebele, C., et.al.: Impact of transmitter bandwidth on transmission performance of coherent 112-Gb/s PDM-QPSK systems. Photon. Technol. Lett. 22, 1859 (2010)CrossRefGoogle Scholar
  8. 8.
    Liu, X., Chraplyvy, A.R., Winzer, P.J., Tkach, R.W., Chandrasekhar, S.: Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit. Nat. Photon. 7, 560–568 (2013)CrossRefGoogle Scholar
  9. 9.
    Zhang, J.W., Yu, J.J., Chi, N.: Transmission and full-band coherent detection of polarization-multiplexed all-optical Nyquist signals generated by Sinc-shaped Nyquist pulses. Sci. Rep. 5, 13649 (2015)CrossRefGoogle Scholar
  10. 10.
    Brixner, T., Krampert, G., Pfeifer, T., Selle, R., Gerber, G., et al.: Quantum control by ultrafast polarization shaping. Phys. Rev. Lett. 92, 208301 (2004)CrossRefGoogle Scholar
  11. 11.
    Aeschlimann, M., Bauer, M., Bayer, D., Brixner, T., de Abajo, F.J.G., et al.: Adaptive subwavelength control of nano-optical fields. Nature 446, 301–304 (2007)CrossRefGoogle Scholar
  12. 12.
    Sato, M., Higuchi, T., Kanda, N., Konishi, K., Yoshioka, K., et al.: Terahertz polarization pulse shaping with arbitrary field control. Nat. Photon. 7, 724–731 (2013)CrossRefGoogle Scholar
  13. 13.
    Colas, D., Dominici, L., Donati, S., Pervishko, A.A., Liew, T.C.H., et al.: Polarization shaping of Poincaré beams by polariton oscillations. Light Sci. Appl. 4, e350 (2015)CrossRefGoogle Scholar
  14. 14.
    Zhou, Y., Liu, Y., Guo, L.: A novel polarization division multiplexing system Employing polar-ofdm with subcarriers interlaced. In: 2015 14th International Conference on Optical Communications and Networks (ICOCN) @ Nanjing, China (2015)Google Scholar
  15. 15.
    Elgala, H., Little, T.D.C.: P-OFDM: spectrally efficient unipolar OFDM. In: Optical Fiber Communications Conference and Exhibition, pp. 1–3 (2014)Google Scholar
  16. 16.
    Kale, S., Pagare, R.A.: OFDM-PON transmission in fiber optical network. In: Conference on Power, Automation and Communication (INPAC), pp. 85–88 (2014)Google Scholar
  17. 17.
    Al-Habash, M.A., Andrews, L.C., Phillips, R.L.: Mathematical model for the irradiance probably density functions of a Laser beam propagating through turbulent media. Opt. English 40(8), 1554–1562 (2001)CrossRefGoogle Scholar
  18. 18.
    Chatzidiamantis, N.D., Karagiannidis, G.K.: On the distribution of the sum of Gamma-Gamma variates and applications in RF and optical wireless communications. IEEE Trans. Commun. 59(5), 1298–1308 (2011)CrossRefGoogle Scholar
  19. 19.
    Black, D.M., Reudink, D.O.: Some characteristics of mobile radio propagation at 836 MHz in the Philadelphia area. IEEE Trans. Veh. Technol. 21(2), 45–51 (1972)CrossRefGoogle Scholar
  20. 20.
    Gottumukkala, V.K.V., Minn, H.: Ergodic capacity analysis of MISO/SIMO-OFDM with arbitrary antenna and channel tap correlation. IEEE Trans. Veh. Technol. 62, 3062–3068 (2013)CrossRefGoogle Scholar
  21. 21.
    Marinos, D., Nistazakis, H.E., Aidinis, K., Tsilis, E., Tombras, G.S.: SISO and MISO architecture investigation for wireless optical OFDM transmission. Int. J. Sens. Netw. Data Commun. 1, 1–5 (2012)CrossRefGoogle Scholar
  22. 22.
    Nistazakis, H.E., Tsigopoulos, A.D., Hanias, M.P., Psychogios, C.D., Marinos, D., Aidinis, C., Tombras, G.S.: Estimation of outage capacity for free space optical links over I-K and K turbulent channels. Radioengineering 20(2), 493–498 (2011)Google Scholar
  23. 23.
    Nistazakis, H.E., Assimakopoulos, V.D., Tombras, G.S.: Performance estimation of free space optical links over negative exponential atmospheric turbulence channels. Optik 122(24), 2191–2194 (2011)CrossRefGoogle Scholar
  24. 24.
    Nistazakis, H.E., Marinos, D., Hanias, M., Aidinis, C., Tsilis, M., Tombras, G.S., Tsigopoulos, A.D., Fafalios, M.E.: Estimation of capacity bounds of free space optical channels under strong turbulence conditions. In: Proceedings of the 2010 18th International Conference on Microwave Radar and Wireless Communications (MIKON 2010), Vilnius, Lithuania, pp. 1–3 (2010)Google Scholar
  25. 25.
    Nistazakis, H.E., Tombras, G.S., Tsigopoulos, A.D., Karagianni, E.A., Fafalios, M.E.: Capacity estimation of optical wireless communication systems over moderate to strong turbulence channels. J. Commun. Netw. 11(4), 384–389 (2009)CrossRefGoogle Scholar
  26. 26.
    Lee, I.E., Ghassemlooy, Z., Ng, W.P., Uysal, M.: Performance analysis of free space optical links over turbulence and misalignment induced fading channels. In: Proceedings of the 2012 8th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP 2012), pp. 1–6 (2012)Google Scholar
  27. 27.
    Wang, P., Wang, R., Guo, L., Cao, T., Yang, Y.: On the performances of relay-aided FSO system over M distribution with pointing errors in presence of various weather conditions. Opt. Commun. 367, 59–67 (2016)CrossRefGoogle Scholar
  28. 28.
    Balaji, K.A., Prabu, K.: Optics Communications Performance evaluation of FSO system using wavelength and time diversity over Malaga turbulence channel with pointing errors. Opt. Commun. 410, 643–651 (2018)CrossRefGoogle Scholar
  29. 29.
    Farid, A.A., Hranilovic, S.: Outage capacity for MISO intensity-modulated free-space optical links with misalignment. IEEE J. Opt. Commun. Netw. 3(10), 780–789 (2011)CrossRefGoogle Scholar
  30. 30.
    Garcia-Zambrana, A., Castillo-Vzquez, C., Castillo-Vzquez, B.: Outage performance of MIMO FSO links over strong turbulence and misalignment fading channels. Opt. Express 19(14), 13480–13496 (2011)CrossRefGoogle Scholar
  31. 31.
    Ansari, I.S., Alouini, M.-S., Cheng, J.: Ergodic capacity analysis of free-space optical links with nonzero boresight pointing errors. IEEE Trans. Wirel. Commun. 14(8), 4248–4264 (2015)CrossRefGoogle Scholar
  32. 32.
    Bhatnagar, M.R.: Differential decoding of SIM DPSK over FSO MIMO links. IEEE Commun. Lett. 17(1), 79–82 (2013)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Popoola, W. O., Ghassemlooy, Z.: BPSK subcarrier intensity modulated free-space optical communications in atmospheric turbulence. J. Lightwave Technol. 27, 967–973 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ECENITTiruchirappalliIndia
  2. 2.Department of ECEIFETCViluppuramIndia

Personalised recommendations