Photonic Network Communications

, Volume 38, Issue 3, pp 299–313 | Cite as

Multilayered optical OFDM for high spectral efficiency in visible light communication system

  • Ayad Atiyah AbdulkafiEmail author
  • Saad Mshhain Hardan
  • Oguz Bayat
  • Osman Nuri Ucan
Original Paper


This paper presents two new schemes for improving the spectral efficiency of an optical orthogonal frequency-division multiplexing-based visible light communication (OFDM-VLC) system. The proposed schemes employed the generalized spatial modulation (GenSM) along with multi-input multi-output (MIMO) techniques as well as modified the coded modulation optical OFDM (CMO-OFDM) approach to attain more bandwidth utilization and higher spectral efficiency. The proposed multilayered/enhanced CMO-OFDM (LeCMO-OFDM) systems ensure the real-valued optical OFDM signals without using Hermitian symmetry and utilize the redundant codes existed in CMO-OFDM for further improvements in system’s spectral efficiency while ensuring acceptable bit error rate (BER) performance. LeCMO-OFDM scheme transmits multilayer optical signals after converting them to unipolar form either by using DC bias (DC-LeCMO-OFDM) or by separating them through employing the GenSM with no DC bias (NDC-LeCMO-OFDM). We present analytical and simulation results to evaluate the effectiveness of the proposed systems and demonstrate the additional capacity gain in terms of spectral efficiency. In addition, the impact of the spacing distance between the light emitting diodes has been addressed. Detailed performance comparison in terms of spectral efficiency and BER between the proposed techniques and other recent works is provided for validation purpose. Finally, results show that our schemes can achieve better spectral and power efficiencies performance with acceptable BER performance when compared with the related methods.


Multilayered optical OFDM VLC Spectral efficiency Generalized spatial modulation 



  1. 1.
    Yesilkaya, A., Basar, E., Miramirkhani, F., Panayirci, E., Uysal, M., Haas, H.: Optical MIMO-OFDM with generalized LED index modulation. IEEE Trans. Commun. 65, 3429–3441 (2017)Google Scholar
  2. 2.
    Jiang, R., Wang, Q., Wang, F., Dai, L., Wang, Z.: An optimal scaling scheme for DCO-OFDM based visible light communications. Opt. Commun. 356, 136–140 (2015)CrossRefGoogle Scholar
  3. 3.
    Li, Y., Tsonev, D., Haas, H.: Non-DC-biased OFDM with optical spatial modulation. In: 2013 IEEE 24th International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), pp. 486–490 (2013)Google Scholar
  4. 4.
    Popoola, W.O., Poves, E., Haas, H.: Error performance of generalised space shift keying for indoor visible light communications. IEEE Trans. Commun. 61, 1968–1976 (2013)CrossRefGoogle Scholar
  5. 5.
    Cai, K., Jiang, M., Ma, X.: Photodetector selection aided multiuser MIMO optical OFDM imaging visible light communication system. IEEE Access 4, 9870–9879 (2016)CrossRefGoogle Scholar
  6. 6.
    Di Renzo, M., Haas, H., Ghrayeb, A., Sugiura, S., Hanzo, L.: Spatial modulation for generalized MIMO: challenges, opportunities, and implementation. Proc. IEEE 102, 56–103 (2014)CrossRefGoogle Scholar
  7. 7.
    Wang, F., Liu, C., Wang, Q., Zhang, J., Zhang, R., Yang, L.-L., et al.: Secrecy analysis of generalized space-shift keying aided visible light communication. IEEE Access 6, 18310–18324 (2018)CrossRefGoogle Scholar
  8. 8.
    Curry, E., Borah, D.K.: Iterative combinatorial symbol design for spatial modulations in MIMO VLC systems. IEEE Photon. Technol. Lett. 30, 483–486 (2018)CrossRefGoogle Scholar
  9. 9.
    Kumar, C.R., Jeyachitra, R.: Dual-mode generalized spatial modulation MIMO for visible light communications. IEEE Commun. Lett. 22, 280–283 (2018)CrossRefGoogle Scholar
  10. 10.
    Wang, T., Yang, F., Cheng, L., Song, J.: Spectral-efficient generalized spatial modulation based hybrid dimming scheme with LACO-OFDM in VLC. IEEE Access 6, 41153–41162 (2018)CrossRefGoogle Scholar
  11. 11.
    Abdulkafi, A.A., Alias, M.Y., Hussein, Y.S.: A novel approach for PAPR reduction in OFDM-based visible light communications. In: 2017 International Conference on Platform Technology and Service (PlatCon), pp. 1–4 (2017)Google Scholar
  12. 12.
    Hardan, S.M., Bayat, O., Abdulkafi, A.A.: A new precoding scheme for spectral efficient optical OFDM systems. Opt. Commun. 419, 125–133 (2018)CrossRefGoogle Scholar
  13. 13.
    Ibe, O.: Fundamentals of Applied Probability and Random Processes. Academic Press, Cambridge (2014)zbMATHGoogle Scholar
  14. 14.
    Fath, T., Klaue, J., Haas, H.: Coded spatial modulation applied to optical wireless communications in indoor environments. In: WCNC, pp. 1000–1004 (2012)Google Scholar
  15. 15.
    Fath, T., Haas, H.: Performance comparison of MIMO techniques for optical wireless communications in indoor environments. IEEE Trans. Commun. 61, 733–742 (2013)CrossRefGoogle Scholar
  16. 16.
    Mohamed, S.E.D.N., Mohamed, A.E.N.A., El-Samie, F.E.A., Rashed, A.N.Z.: Performance enhancement of IM/DD optical wireless systems. Photon. Netw. Commun. 36(1), 114–127 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Electrical EngineeringTikrit UniversitySalahaddinIraq
  2. 2.Graduate School of Science and EngineeringAltinbas UniversityIstanbulTurkey

Personalised recommendations